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FOREWORD 

Through the process of normal evolution, it is expected that expansion, deletion, or 
modification of this document may occur.  This Report is therefore subject to CCSDS 
document management and change control procedures, which are defined in Organization 
and Processes for the Consultative Committee for Space Data Systems (CCSDS A02.1-Y-4).  
Current versions of CCSDS documents are maintained at the CCSDS Web site: 

http://www.ccsds.org/ 

Questions relating to the contents or status of this document should be sent to the CCSDS 
Secretariat at the e-mail address indicated on page i. 
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1 INTRODUCTION 

1.1 PURPOSE AND SCOPE 

It is expected that a number of Earth Exploration Satellite Service (EESS) missions will carry 
payloads producing substantial data rates, that is, starting from a few hundred Mb/s. Such 
missions would benefit from employing transmitters using a state-of-the-art air interface that 
exploits link adaption, that is, achieves high spectral efficiency by adjusting the modulation 
and coding to the link budget. For this reason, the Consultative Committee for Space Data 
Systems (CCSDS) developed a flexible advanced coding and modulation scheme for high 
rate telemetry applications (reference [1] that offers precisely such benefits by means of 
powerful Serially Concatenated Convolutional Codes (SCCCs) with modulations belonging 
to the family of Phase Shift Keying (PSK) and Amplitude PSK (APSK), providing 
efficiencies up to 5.39 bits per channel symbol. 

The goal of this document is to provide additional informative material for reference [1]. 
Namely, this Green Book includes a tutorial overview of the CCSDS specification in 
reference [1] (aimed at helping first-time readers understand the recommendation) together 
with performance information supported by illustrations. 

This Report is not intended to provide all necessary knowledge for successfully designing 
telemetry communication links; it provides supporting and descriptive material only. This 
document is a CCSDS Informational Report and is therefore not to be taken as a CCSDS 
Recommended Standard. The actual Recommended Standard is in reference [1]. In the event 
of any conflict between reference [1] and the material presented herein, the Recommended 
Standard (reference [1]) is the controlling specification. 

In no event will CCSDS or its members be liable for any incidental, consequential, or indirect 
damages, including any lost profits, lost savings, or loss of data, or for any claim by another 
party related to errors or omissions in this Report. 

1.2 ORGANIZATION 

The remainder of this Report is organized as follows: section 2 covers a tutorial overview of 
CCSDS specification in reference [1] (aimed at helping first-time readers to understand the 
recommendation), describing its main functions and parameters with a focus on the encoding 
function, constellations and mapping, Physical Layer (PL) frame and pilot insertion, and 
baseband filtering. Section 3 shows the performance of the recommended codes and 
modulations by means of error rate curves on the linear AWGN channel assuming ideal 
synchronization. Section 4, then, provides the performance on a nonlinear channel that 
models nonlinear distortions due to amplification. Section 5 focuses on the synchronization 
chain and provides a possible reference receiver with details on its performance on the 
AWGN channel with phase noise and Doppler. In sections 6 and 7, end-to-end performance 
is provided, and in section 8, conclusions are drawn. 
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1.3 TERMINOLOGY 

The terminology adopted here tries to comply with that adopted in reference [1], but for the 
reader’s convenience, some of the most important terms and symbols are reported here with 
the aim of avoiding confusion with other meanings sometimes adopted in other documents. 

information bit: Bit at the input interface of the SCCC encoding block coming from the 
ACM Mode adaptation (see figure 2-1 in section 2). 

encoded bit: Bit at the output interface of the SCCC encoding block and at the input of the 
PL Framing (see figure 2-1 in section 2). 

channel symbol: Modulated symbol at the output of the constellation mapping. 

efficiency: Number of information bits per channel symbol, excluding PL signaling and pilot 
insertion. It is not to be confused with the classical spectral efficiency denoting the 
information rate per Hz of bandwidth adopted, although it is proportional to it. 

ModCod: Modulation and coding format. 

Es/N0:  Signal-to-noise ratio defined as energy per channel symbol over noise power spectral density. 

Eb/N0: Signal-to-noise ratio defined as energy per information bit over noise power spectral density. 

Rchs: Channel symbol rate, measured in MBaud. 

1.4 MATHEMATICAL NOTATION 

x Scalar value (real or complex) 
x* Complex conjugated 
ℛ(x) Real part 
| x | Absolute value 
∠x, angle(x) Phase angle 
xk Indexed scalar value (e.g., for indexing of signal samples) 
{xk} Sequence of the indexed values 
x(t) Analog signal (as function of time) 
⊕ Sum modulo 2 (XOR) 
E{∙} Expected value 
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2 OVERVIEW 

2.1 INTRODUCTION 

This section provides a quick overview of the coding and modulation scheme of the 
Recommended Standard. In particular, it aims at providing additional informative material 
for an easier understanding of the Recommended Standard (reference [1]) and of the results 
shown later in this Report. 

This section is not meant to provide a full description of the functions needed at the sending 
end; it only provides a preliminary overview of some functions. Reference [1] provides the full 
and detailed description. 

2.2 FLEXIBLE ADVANCED CODING AND MODULATION SCHEME 

2.2.1 GENERAL 

The Flexible Advanced Coding and Modulation Scheme for High Rate Telemetry 
Applications (reference [1]) is designed for space communications links, primarily between 
spacecraft and ground elements, and is based on SCCCs (see reference [2]) able to support a 
wide range of spectral efficiency values based on a single coding structure. The PL frame 
structure deployed by this standard is agnostic as to the protocol used at higher layers (e.g., 
AOS, TM, or USLP) while providing support for maintaining synchronization during 
transition from one Modulation and Coding format (ModCod) to another. 

An overview of the functional blocks of the architecture at the sending end is shown in 
figure 2-1.1 At its input, the system accepts transfer frames (from the data link protocol 
sublayer), performs the functions illustrated, and delivers a continuous stream of channel 
symbols to the PL. 

                                                 
1 Figures 2-1 and 2-2 are taken from reference [1], which should be referred to for normative purposes, and they 
are copied here for readers’ convenience only.  
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Figure 2-1:  Functional Diagram at Sending End1 

The stream format at different stages of processing is shown in figure 2-2. Attached SYNC 
Markers (ASMs) are inserted between transfer frames, generating a stream of Synch-Marked 
Transfer Frames (SMTFs), prior to the slicer function. Then the stream of SMTFs is sliced 
into information blocks of K bits that are fed to the SCCC encoding function that provides as 
output encoded blocks of N bits. Afterwards, constellation mapping is performed; its output 
stream is a block of encoded (channel) symbols belonging to a PSK or APSK modulation, 
with block length always equal to 8100 symbols. Finally, PL signaling and (optionally) pilot 
insertion are done, followed by PL pseudo-randomization.  
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Figure 2-2:  Stream Format at Different Stages of Processing1 

The configuration of all functional blocks is performed by means of a list of managed 
parameters, for which the full list and description can be found in section 9 of reference [1]. 
Among these, the Adaptive Coding and Modulation (ACM) format can be seen as the most 
important parameter, identified with an integer ranging from 1 to 27. Namely, by changing 
the ACM format parameter, the modulation and coding format (of the encoded symbols) 
changes, and thus the spectral efficiency can be selected as required. The ACM format is the 
only parameter that supports reconfiguration during operation, meaning that it can be 
changed without interruption or significant delay in data transmission. 

Table 2-12 shows how the ACM format selection varies some of the main figures of the 
modulation and encoding scheme. In particular, it varies the constellation cardinality m 
(number of encoded bits per channel symbol), the length of the information block K, the 
length of the encoded block N, the coding rate defined as K / N (i.e., information bits per 
encoded bit), and the efficiency defined as Km / N (i.e., information bit per channel symbol). 
It can be seen that the ACM allows one to select five different constellations mappings 
ranging from 2 to 6 bits per channel symbol. It also allows one to select several coding rates 
for each constellation; hence the efficiency can change from a minimum of 0.71 bit/channel 
symbol to a maximum of 5.39 bit/channel symbol. 

                                                 
2 As with figures 2-1 and 2-2, table 2-1 is copied from reference [1]. 
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Table 2-1: Modulation Cardinality, Information Block Length, Encoded Block 
Length, Coding Rate, and Efficiency As Functions of the ACM Format 

 ACM  m K N K ∕ N Efficiency 

Q
P

S
K

 

1 

2 

5758   

16200 

0.36 0.71 
2 6958   0.43 0.86 
3 8398   0.52 1.04 
4 9838   0.61 1.21 
5 11278  0.70 1.39 
6 13198  0.81 1.63 

8P
S

K
 

7 

3 

11278  

24300 

0.46 1.39 
8 13198  0.54 1.63 
9 14878  0.61 1.84 

10  17038  0.70 2.10 
11  19198  0.79 2.37 
12  21358  0.88 2.64 

16A
P

S
K

 

13 

4 

 19198 

32400 

 0.59 2.37 
14  21358  0.66 2.64 
15 23518  0.73 2.90 
16 25918  0.80 3.20 
17 28318  0.87 3.50 

32A
P

S
K

 

18 

5 

25918 

40500 

 0.64 3.20 
19 28318  0.70 3.50 
20 30958  0.76 3.82 
21 33358  0.82 4.12 
22 35998  0.89 4.44 

64A
P

S
K

 

23 

6 

33358 

48600 

 0.69 4.12 
24  35998  0.74 4.44 
25  38638  0.80 4.77 
26  41038  0.84 5.06 
27  43678  0.90 5.39 

For the functional blocks in figure 2-1 (i.e., SCCC encoding, constellation, bit mapping, 
pseudo-randomization, and baseband filter), the reader should refer to reference [1], in which 
the normative description for each element is provided. The rest of this section provides 
additional explanatory details on the PL signaling (as specified in reference [1]). 

2.2.2 PL SIGNALING, PILOT INSERTION, AND PSEUDO-RANDOMIZATION 

As explained in reference [1] and shown in figure 2-3, 16 encoded blocks of 8100 symbols, 
each of them representing a codeword, are collected into a PL frame structure, to which a 
header is prepended, with pilot groups inserted periodically (see reference [1] for details). 
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Figure 2-3:  PL Frame Structure3 

The header is composed of a Frame Marker (FM) and a Frame Descriptor (FD), which are 
mapped to π ∕ 2-BPSK symbols, as shown in figure 2-4. The π ∕ 2-BPSK transmits on the I 
and III quadrants bisector for odd bit positions (first, third, etc.) and on the II and IV 
quadrants bisector for even bit positions. Mathematically, for all bits bi, i = 1, …, 320 of the 
FM and FD, the I and Q components of the transmitted channel symbol are 

𝐼𝑖 = 𝑄𝑖 =
1
√2

(1 − 2𝑏𝑖),                               if 𝑖 = 1,3,5, … 

𝐼𝑖 = −𝑄𝑖 = −
1
√2

(1 − 2𝑏𝑖),                       if 𝑖 = 2,4,6, …  , 

which is exactly the same mathematical expression of equation (5) in the Recommended 
Standard (reference [1]). 

                        

Figure 2-4: π/2-BPSK Constellation at Odd Bit Position (Left) and Even Bit Position (Right) 

In case pilots are used (signaled by the proper field in the FD, as described in reference [1]), 
they are unmodulated QPSK symbols, with I and Q components 

𝐼𝑖 = 𝑄𝑖 =
1
√2

 . 

                                                 
3 From reference [1]. 

256 π/2 BPSK
Symbols

64 π/2 BPSK
Symbols 8100 Symbols (+240 Pilots) 8100 Symbol (+240 Pilots)

Subsection 1 Subsection 2 Subsection 15

540 Data
Symbols

16 Pilot
Symbols

CWS_16CWS_1FDFM

Q 0

1

I

Q
0

1

I



CCSDS REPORT CONCERNING SCCC—SUMMARY OF DEFINITION AND PERFORMANCE 

CCSDS 130.11-G-2 Page 2-6 May 2023 

The overhead of PL signaling is less than 1 percent, and increases up to ~3 percent when 
pilot insertion is performed. 

The resulting frame is finally randomized by means of the PL pseudo-randomization process 
described in annex C of reference [1]. The randomization process is done by means of a 
complex multiplication of the channel symbol with a randomization sequence that is uniquely 
identified by a code number, denoted in reference [1] as n. 
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3 PERFORMANCE OF THE RECOMMENDED CODES AND 
MODULATIONS ON THE AWGN CHANNEL WITH IDEAL 
SYNCHRONIZATION 

3.1 INTRODUCTION 

This section reports the performance of the recommended codes and modulations over the 
linear channel affected by Additive White Gaussian Noise (AWGN). In particular, 3.2 
describes the channel model adopted, while 3.3 shows the numerical results derived by 
means of computer simulations. 

3.2 CHANNEL MODEL 

The baseband model of the transmitted signal by the sending end is 

𝑥(𝑡) = �𝑥𝑘𝑝(𝑡 − 𝑘𝑘) , 
𝑘

 

where xk are the transmitted channel symbols at the output of the PL framing function 
(described in section 2), p(t) is the shaping pulse, and T is the channel symbol duration. The 
constellation of symbols is properly normalized such that E{| xk |

2} = Es, where Es denotes the 
energy per channel symbol. The shaping pulse is SRRC; hence in ideal conditions, it satisfies 
the intersymbol-interference free condition (the so-called Nyquist condition), that is, 

� 𝑝(𝑡)𝑝(𝑡 − 𝑘𝑘)𝑑𝑡 = �1,  𝑘 = 0
0, 𝑘 ≠ 0

∞

−∞
. 

The channel is considered affected only by AWGN; hence the baseband model of the 
received signal is given by 

𝑦(𝑡) = �𝑥𝑘𝑝(𝑡 − 𝑘𝑘) 
𝑘

+ 𝑤(𝑡), 

where w(t) is white complex Gaussian noise with power spectral density N0. A sufficient 
statistic for the computation of the Log-Likelihood Ratios (LLR) is sampled at the output of a 
matched filter. The received samples after the matched filter read 

𝑦𝑘 = 𝑥𝑘 + 𝑤𝑘, 

where wk are independent Gaussian random variables with variance equal to N0. For this 
discrete-time received signal, the Signal-to-Noise Ratio (SNR) can be expressed as Es/N0 or 
Eb/N0, where Eb is the energy per information bit. The Eb/N0 is related to the Es/N0 by 

𝐸b

𝑁0
�
𝐾
𝑁�

𝑚 =
𝐸s

𝑁0
 , 

where m and K/N are the modulation order (number of bits per channel symbol) and the 
coding rate, respectively (as defined in section 2). 

(1) 

(2) 

(3) 
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3.3 NUMERICAL RESULTS 

The performance results of the Recommended Standard’s modulation and coding scheme has 
been evaluated over the AWGN channel described in 3.2 by means of computer simulations 
and under the assumption of ideal synchronization. Clearly, with the AWGN channel model, 
results are independent of the channel symbol rate and roll-off. 

As first results, figures 3-1 and 3-2 show the measured Bit Error Rate (BER) as a function of 
the Es/N0 for all PSK/APSK constellations that are adopted by the various ACM formats in 
absence of SCCC turbo coding (uncoded). It can be observed that for ACM formats using 
16APSK (from 13 to 17) and 32APSK (from 18 to 22), constellations have different 
performance even when the cardinality is the same, because of the different radii (see table 5-1 
of reference [1]). 

 

Figure 3-1: BER on Linear AWGN Channel for PSK/APSK Constellations Adopted 
by the ACM Formats (Uncoded BER) 
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Figure 3-2: BER on Linear AWGN Channel for APSK Constellations Adopted by the 
ACM Formats (Uncoded BER) 
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Figures 3-3 to 3-6 show the BER and Codeword Error Rate (CER) as functions of the Eb/N0 
for all 27 ACM formats, when 10 iterations of the SCCC turbo decoder are performed. 

 

Figure 3-3: BER on Linear AWGN Channel for ACM Formats from 1 to 12 (PSK 
Modulations) 

 

Figure 3-4: CER on Linear AWGN Channel for ACM Formats from 1 to 12 (PSK 
Modulations) 
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Figure 3-5: BER on Linear AWGN Channel for ACM Formats from 13 to 27 (APSK 
Modulations) 

 

Figure 3-6: CER on Linear AWGN Channel for ACM Formats from 13 to 27 (APSK 
Modulations) 
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Table 3-1 shows the required SNR (in terms of both Es/N0 and Eb/N0) for achieving a target 
CER of 10−4, and the corresponding efficiency in terms of bits per transmitted channel 
symbol. These values can be shown also in a plane with the efficiency versus Eb/N0, as shown 
in figure 3-7. For comparison, the AWGN capacity (Shannon limit, reference [2]) is also 
shown. 

 

Figure 3-7: Efficiency of the Recommended ACM Formats on the Linear AWGN 
Channel with Respect to Channel Capacity 
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Table 3-1: SNR Thresholds for CER = 1e − 4, Achieved on the AWGN Channel by 
the ACM Formats 

 ACM Es/N0 [dB] Eb/N0 [dB] Efficiency 

Q
PSK 

1 −0.58 0.90 0.71 
2 0.42 1.08 0.86 
3 1.60 1.44 1.04 
4 2.71 1.87 1.21 
5 3.83 2.39 1.39 
6 5.42 3.30 1.63 

8PSK 

7 3.91 2.41 1.39 
8 5.10 3.00 1.63 
9 6.25 3.63 1.84 
10 7.75 4.53 2.10 
11 9.21 5.46 2.37 
12 10.90 6.69 2.64 

16APSK 

13 8.18 4.45 2.37 
14 9.24 5.03 2.64 
15 10.34 5.67 2.90 
16 11.55 6.50 3.20 
17 13.02 7.58 3.50 

32APSK 

18 11.46 6.41 3.20 
19 12.52 7.08 3.50 
20 13.49 7.69 3.82 
21 14.62 8.49 4.12 
22 16.04 9.61 4.44 

64APSK 

23 14.73 8.56 4.12 
24 15.74 9.27 4.44 
25 16.83 10.07 4.77 
26 17.85 10.83 5.06 
27 19.10 11.78 5.39 
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4 PERFORMANCE OF THE RECOMMENDED CODES AND 
MODULATIONS ON NONLINEAR CHANNELS WITH IDEAL 
SYNCHRONIZATION 

4.1 INTRODUCTION 

This section focuses on the performance of the Recommended Standard’s codes and 
modulations over a nonlinear channel model with ideal synchronization. In particular, 4.2 
provides a channel model that includes nonlinear distortions typically due to a Traveling Wave 
Tube Amplifier (TWTA), an output filter (aimed at mitigating spectral regrowth), and AWGN. 
Starting from this channel model, 4.3 describes how to optimize the Input and Output Back-Off 
(IBO/OBO) by means of the Total Degradation (TD). Finally, 4.4 shows the numerical results 
for the recommended codes and modulations, in particular, their TD, BER/FER curves, and the 
bandwidth expansion after the nonlinearity (due to spectral regrowth). It also shows how pre-
distortion can improve performance, especially for ACMs 13–17 (based on APSK 
modulations). 

4.2 NONLINEAR CHANNEL MODEL 

The linearly modulated signal of equation (1) is applied to the nonlinear channel (as shown in 
figure 4-1), which includes a TWTA and an RF output filter (mitigating spectral regrowth). 
The distorted signal is then further corrupted by AWGN. 

 

Figure 4-1:  Block Diagram of the Overall Channel Model Considered in Simulations 

The TWTA was modelled by means of the input/output relationship 

𝑧(𝑡) = 𝑓AM(|𝑥(𝑡)|)𝑒𝑗∠𝑥(𝑡)+𝑓PM(|𝑥(𝑡)|) , 

where fAM (|x(t)|) and fPM (|x(t)|) are the AM/AM and AM/PM characteristics, respectively. 

For all simulations, a channel symbol rate of 100 MBaud and SRRC with roll-off 0.35 were 
assumed (unless differently specified), while at the receiver, a symbol-by-symbol detector 
was adopted for computing the soft information (the LLRs) that is the input of the decoder. A 
maximum of 10 decoding SCCC turbo iterations was assumed for the simulations. The 
specific AM/AM and AM/PM characteristics adopted for simulations (modelling a typical 
TWTA operating in the 25.5–27 GHz band) are as shown in figure 4-2, while the output filter 
is a 5th order Elliptical filter with frequency response as shown in figure 4-3, having ripple 
0.1 dB and passband and stopband 75 MHz and 93.75 MHz, respectively. 

Filter
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Figure 4-2: AM/AM and AM/PM Nonlinear Transfer Characteristics Adopted for 
Simulations 

 

Figure 4-3:  RF Filter Frequency Response 
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4.3 IBO/OBO OPTIMIZATION BY MEANS OF TOTAL DEGRADATION 

A useful figure of merit for optimizing the operating point is the TD, defined as 

𝑘𝑇 = �
𝐸b

𝑁0
+ OBO� − �

𝐸b

𝑁0
�
AWGN

      [dB], 

where �𝐸b
𝑁0

+ OBO� is the SNR and OBO values required for obtaining a specific target CER 

with the channel model assumed. The value �𝐸b
𝑁0
�
AWGN

 represents instead the SNR required 

on the ideal AWGN channel to achieve the same target CER (reported in table 3-1). With this 
definition, TD provides a useful representation of the overall losses experienced by the link, 
both in term of distortion and as reduced available power (due to the back-off). In this 
Report, a target CER equal to 10−4 has been adopted for the optimization of the operating 
point. 

To achieve operating point optimization, CER curves must be computed for different IBOs,4 
and the TD is derived as loss between each of the curves, with respect to the AWGN curve at 
CER = 10−4. Finally, the resulting TD values are reported as functions of the IBO. An 
example of this process is shown in figures 4-4 and 4-5 for ACM format 15. In the first 
figure, all CER curves are shown down to CER = 10−4, and the TD is measured as loss from 
the AWGN curve. In the second figure, the loss is reported as a function of the IBO, and it 
can be seen that the optimal IBO is around 5 dB. 

 

Figure 4-4:  CER for Different IBO for ACM 15 on Nonlinear AWGN Channel 
                                                 
4 While IBO is an input parameter, the OBO is measured at the output of the amplifier and, for the modulated 
signal, cannot be directly derived by the AM/AM curve of figure 4-2 (that is valid for an unmodulated carrier). 
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Figure 4-5:  Total Degradation for ACM Format 15 

4.4 NUMERICAL RESULTS 

4.4.1 TOTAL DEGRADATION AND ERROR RATE CURVES 
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Figure 4-6:  Total Degradation for ACM Formats from 1 to 12 (PSK Modulations) 

 

Figure 4-7:  Total Degradation for ACM Formats from 13 to 27 (APSK Modulations) 
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Figures 4-8 to 4-11 show the BER and CER for all possible ACM formats using the optimal 
IBO found by means of the TD analysis. The corresponding SNR thresholds for CER equal 
10−4, and OBO for each individual ACM mode (to be taken into account when performing 
system level design) can be found in table 4-1. 

 

Figure 4-8: BER on Nonlinear AWGN Channel for ACM Formats from 1 to 12 (PSK 
Modulations) with the Optimal IBO 

 

Figure 4-9: CER on Nonlinear AWGN Channel for ACM Formats from 1 to 12 (PSK 
Modulations) with the Optimal IBO 
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Figure 4-10: BER on Nonlinear AWGN Channel for ACM Formats from 13 to 27 
(APSK Modulations) with the Optimal IBO 

 

Figure 4-11: CER on Nonlinear AWGN Channel for ACM Formats from 13 to 27 
(APSK Modulations) with the Optimal IBO 
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Table 4-1: SNR Thresholds for CER = 1e − 4 and Corresponding OBO and TD, 
Achieved by the Recommended ACM Formats on the Nonlinear AWGN 
Channel without Pre-Distortion 

 ACM  Es/N0 [dB] Eb/N0 [dB] OBO [dB] TD [dB] Efficiency 

Q
PSK 

1 –0.28 1.20 0.32 0.61 0.71 
2 0.70 1.35 0.32 0.59 0.86 
3 1.91 1.74 0.32 0.63 1.04 
4 3.03 2.20 0.32 0.64 1.21 
5 4.18 2.75 0.32 0.67 1.39 
6 5.84 3.72 0.32 0.73 1.63 

8PSK 

7 4.29 2.86 0.29 0.66 1.39 
8 5.50 3.38 0.29 0.69 1.63 
9 6.67 4.02 0.29 0.71 1.84 
10 8.20 4.98 0.36 0.81 2.10 
11 9.82 6.07 0.36 0.96 2.37 
12 11.87 7.65 0.36 1.32 2.64 

16APSK 

13 9.25 5.50 1.34 2.41 2.37 
14 10.43 6.21 1.34 2.53 2.64 
15 11.61 6.99 1.63 2.90 2.90 
16 13.19 8.14 1.63 3.27 3.20 
17 14.85 9.41 1.99 3.82 3.50 

32APSK 

18 13.22 8.17 3.12 4.88 3.20 
19 14.54 9.09 3.12 5.14 3.50 
20 15.39 9.57 3.68 5.58 3.82 
21 16.29 10.14 4.27 5.94 4.12 
22 18.37 11.88 4.27 6.59 4.44 

64APSK 

23 16.48 10.33 4.21 5.96 4.12 
24 17.94 11.47 4.21 6.41 4.44 
25 18.78 12.00 4.89 6.84 4.77 
26 19.63 12.59 5.62 7.40 5.06 
27 21.42 14.10 5.62 7.94 5.39 

4.4.2 STATIC PRE-DISTORTION 

The TD can be effectively decreased by means of pre-distortion. A static data pre-distorter (at 
the transmitter), such as the one in reference [3], was assumed for the simulations presented in 
this section. Such pre-distortion is basically a simple look-up table that transmits the 
constellation symbols with a fixed correction of the radii amplitudes and phases (computed off-
line). 
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Figures 4-12 to 4-14 show the TD as a function of IBO for ACM formats using 16APSK, 
32APSK, and 64APSK. For comparison, the TD without pre-distortion (as in 4.4.1) is also 
shown. It can be seen how, already with this simple pre-distorter, a performance gain of more 
than 0.5 dB is possible with 16APSK, and more than 2 dB with 32APSK and 64APSK. 

On the other hand, in case of PSK modulations, there are no performance gains since the 
constellation has a constant amplitude. Figure 4-15 shows the TD for some ACM formats having 
8PSK modulation, and it can be seen that the static pre-distorter does not provide any 
improvement. 

It should be noted that the pre-distortion algorithm adopted here is just a reference and is not 
considered to be optimal. It is expected that pre-distortion based on a more complex model, 
for example, a polynomial representation of the amplifier (see reference [4]), could provide a 
performance gain of up to 5 dB for 64APSK in addition to reducing the spectral occupation. 

 

Figure 4-12: Total Degradation for ACM Formats from 13 to 17 (16APSK) with and 
without Pre-Distortion 
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Figure 4-13: Total Degradation for AMC Formats from 18 to 22 (32APSK) with and 
without Pre-Distortion 

 

Figure 4-14: Total Degradation for ACM Formats from 23 to 27 (64APSK) with and 
without Pre-Distortion 
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Figure 4-15: Total Degradation for ACM Formats from 10 to 12 (8PSK) with and 
without Pre-Distortion 

The SNR values for APSK modulations that allow a CER equal to 10−4 when static pre-
distortion is adopted are summarized in table 4-2. In the table, the corresponding OBO, TD, 
and its gain with respect to the scenario without pre-distortion (see table 4-1) are also 
reported. The TD gain can also be seen in an SNR plane such as the one in figure 4-16, where 
the Eb/N0 + OBO is shown for each Eb/N0 threshold for the AWGN channel, and the distance 
from the bisector is the TD. 
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Table 4-2: SNR Thresholds for CER = 1e − 4 and Corresponding OBO and TD, 
Achieved by the Recommended ACM Formats with Pre-Distortion 

 ACM  Es/N0 [dB] Eb/N0 [dB] OBO [dB] TD [dB] TD Gain [dB] 

16APSK 

13 8.91 5.16 1.00 1.73 0.68 
14 10.07 5.86 1.00 1.83 0.70 
15 11.18 6.55 1.14 1.99 0.91 
16 12.26 7.61 1.15 2.25 1.02 
17 14.30 8.86 1.35 2.63 1.19 

32APSK 

18 12.42 7.37 2.03 2.99 1.89 
19 13.68 8.24 2.03 3.19 1.95 
20 14.68 8.86 2.34 3.53 2.05 
21 16.10 9.95 2.35 3.83 2.11 
22 17.79 11.31 2.67 4.42 2.17 

64APSK 

23 16.29 10.13 2.20 3.76 2.20 
24 17.19 10.71 2.62 4.07 2.34 
25 18.27 11.48 3.10 4.54 2.30 
26 19.29 12.25 3.65 5.09 2.31 
27 21.15 13.83 3.65 5.70 2.24 

 

Figure 4-16:  SNR Threshold Plane for All the ACM Formats 
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4.4.3 OCCUPIED BANDWIDTH 

The bandwidth W, defined as the bandwidth containing 99 percent of the signal power, has 
been computed after the nonlinearity for roll-off 0.2 and 0.35. Figures 4-17 and 4-18 show W 
before a post-amplifier RF Filter and normalized to the channel symbol rate Rchs as a function 
of OBO. Since 16APSK and 32APSK have circumference radii that depend on the actual 
ModCod, it is shown that only ACM13 and ACM18 have the highest peak-to-average ratio of 
their set. It can be seen that for OBO greater than 4 dB, a bandwidth equal to the one in linear 
regime is reached; that is, all the modulations have bandwidths 1.07Rchs and 1.17Rchs for roll-
off 0.2 and 0.35, respectively. Additionally, it can be seen that 32APSK has the largest 
bandwidth occupancy. This results from its peak-to-average ratio, which can be demonstrated 
to be higher than those for 16APSK and 64APSK. 

 

Figure 4-17: Bandwidth Normalized to the Channel Symbol Rate as a Function of 
the OBO (SRRC with Roll-Off 0.20) 
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Figure 4-18: Bandwidth Normalized to the Channel Symbol Rate as a Function of 
the OBO (SRRC with Roll-Off 0.35) 

The RF filter aims to minimize the spectral regrowth outside the signal bandwidth. 
Figures 4-19 and 4-20 show the bandwidth for all the modulations after the filter. It can be 
seen that in all cases, the bandwidth is always less than 1.4Rchs. 

  

Figure 4-19: Bandwidth after the RF Filter Normalized to the Channel Symbol Rate 
as a Function of the OBO (SRRC with Roll-Off 0.20) 
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Figure 4-20: Bandwidth after the RF Filter Normalized to the Channel Symbol Rate 
as a Function of the OBO (SRRC with Roll-Off 0.35) 

Table 4-3 shows a summary of the expected bandwidth for some of the ACM formats 
considered in previous sections when the shaping pulse has roll-off 0.35 and the IBO is 
selected as the one that minimizes the TD. For comparison, table 4-4 shows the bandwidth 
occupancy with pre-distortion at the transmitter (adopted only for APSK modulations). It can 
be seen that, if RF filtering is adopted, pre-distortion allows a noticeable decrease of the 
IBO/OBO, while the bandwidth increase due to spectral regrowth is maintained as 
acceptable. 

Table 4-3: Bandwidth for Different ACM at the Optimal IBO When No Pre-
Distortion Is Adopted at the Transmitter (SRRC with Roll-Off 0.35) 

ACM Optimal IBO 
[dB] 

Corresponding 
OBO [dB] 

Bandwidth at optimal IBO 
before RF filtering 

Bandwidth at optimal 
IBO after RF filtering 

4 0 0.32 2.56 ∙ Rchs 1.29 ∙ Rchs 

10 1 0.36 2.44 ∙ Rchs 1.2 ∙ Rchs 

14 4 1.34 2.04 ∙ Rchs 1.24 ∙ Rchs 

20 9 3.68 1.27 ∙ Rchs 1.19 ∙ Rchs 

25 11 4.89 1.21 ∙ Rchs 1.18 ∙ Rchs 
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Table 4-4: Bandwidth for Different ACM at the Optimal IBO When Pre-Distortion 
Is Adopted at the Transmitter (SRRC with Roll-Off 0.35) 

ACM Optimal IBO 
[dB] 

Corresponding 
OBO [dB] 

Bandwidth at optimal IBO 
before RF filtering 

Bandwidth at optimal 
IBO after RF filtering 

14 2 1.00 2.27 ∙ Rchs 1.31 ∙ Rchs 

20 6 2.34 1.78 ∙ Rchs 1.22 ∙ Rchs 

25 8 3.10 1.31 ∙ Rchs 1.20 ∙ Rchs 
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5 SYNCHRONIZATION 

5.1 INTRODUCTION 

This section deals with the synchronization for the recommended codes and modulations. In 
particular, a possible synchronization chain is described and performance evaluated on the 
AWGN channel when affected by phase noise and Doppler shift. The remainder of this 
section is organized as follows: Subsection 5.2 describes the adopted channel model with 
focus on the mathematical models adopted for generating Doppler and phase noise. 
Subsection 5.3 introduces the synchronization chain that has been adopted for evaluation of 
the performance. Subsections 5.4 to 5.7 analyze the performance and characteristics of each 
algorithm adopted in the synchronization chain. Finally, in 5.8, performance results in terms 
of CER are presented. 

5.2 CHANNEL MODEL AFFECTED BY DOPPLER AND PHASE NOISE 

The linearly modulated signal of equation (1) is transmitted over an AWGN channel affected 
by Doppler shift, Doppler rate, and phase noise. Hence the baseband model of the received is 
given by 

𝑦(𝑡) = �𝑥𝑘𝑝(𝑡 − 𝑘𝑘)𝑒𝑗𝑗(𝑡) + 𝑤(𝑡),
𝑘

 

where xk are the transmitted channel symbols belonging to a constellation (PSK/APSK) 
properly normalized such that E{|xk|

2} = Es (being Es the energy per channel symbol), and 
w(t) is AWGN with power spectral density N0. The SNR is equal to Es/N0. Instead, ϕ(t) reads 

𝜙(𝑡) = 2𝜋� 𝑓(𝜏)𝑑𝜏 + 𝜃(𝑡),
𝑡

0
 

with f(t) and θ(t) the Doppler profile and the phase noise, respectively. Once again, all 
simulations assume a channel symbol rate of Rchs = 100 MBaud and SRRC with roll-off 0.35, 
while for comparison purposes with AWGN results, the Eb/N0 does not take into account the 
overhead due to frame header and pilots (for which another ~0.15 dB should be taken into 
account because of the 3-percent overhead of PL signaling and pilot insertion, see 2.2.2). 

(4) 
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For f(t), two possible profiles were adopted for testing different Doppler shift and rate 
conditions. Namely, 1) a sinusoidal profile having expression and derivative as 

𝑓(𝑡) = 𝑓D cos �
𝑓R
𝑓D
𝑡� ,       

𝑑𝑓(𝑡)
𝑑𝑡

= −𝑓R sin �
𝑓R
𝑓D
𝑡� , 

where fD is the maximum Doppler shift and fR is the maximum Doppler rate, and 2) a 
triangular wave, having maximum Doppler shift fD and derivative ± fR. For both profiles, 
unless differently specified, fD = 1 MHz and fR = 50 kHz/s were considered. 

It should be noted that the sinusoidal profile tries to reproduce the satellite passes. Figure 5-1 
shows the Doppler profile sampled at the beginning of each frame when fD = 1 MHz and 
fR = 50 kHz/s, while figure 5-2 shows the Doppler profile of a satellite at 700 km from Earth, 
transmitting at 27 GHz, and passing at zenith. It can be observed that the sinusoidal profile is 
adequate for reproducing the Doppler shift and rate experienced in real passes, and that the 
adopted values fD and fR are well above the ones that can be experienced in K-Band. In fact, the 
example in figure 5-2 shows a Doppler shift of 600 kHz and a maximum Doppler rate of 7 
kHz/s. 

 

Figure 5-1:  Sinusoidal Profile for Doppler Shift and Rate at 1 MHz and 50 kHz/s 
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Figure 5-2: Doppler Rate and Shift for an Earth Observation Satellite at 700 km, 
Passing at Zenith, and Transmitting at 27 GHz 

Similarly, the triangular wave tries to model the carrier sweep, and it has been included as the 
worst case of this Report’s simulations. The example in figure 5-3 shows the triangular wave 
sampled at the beginning of each frame when fD = 1 MHz and fR = 50 kHz/s. 

 

Figure 5-3: Triangular Wave Frequency Profile for Doppler Shift and Rate at 1 MHz 
and 50 kHz/s 
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Figure 5-4: Phase Noise Mask Adopted for Simulation of the Phase Noise 
Experienced in K-Band 

5.3 STUDIED SYNCHRONIZATION SCHEME 

If the received signal in equation (4) passes through a filter matched to the shaping pulse, the 
sequence of samples {yk} at its output reads 

𝑦𝑘 = �𝑥𝑘 − 𝑖𝑔𝑖,𝑘 − 𝑖
𝑖

+ 𝑤𝑘, 

where 

𝑔𝑖,𝑘−𝑖 = � 𝑒𝑗𝑗(𝑡+(𝑘−𝑖)𝑇)𝑝(𝑡)𝑝(𝑡 − 𝑖𝑘)𝑑𝑡
∞

−∞ 
, 

and wk are independent Gaussian random variables with variance equal to N0. Under the 
assumption that ϕ(t) is ‘slow’ with respect to the channel symbol time, the expression above 
simplifies to 

𝑦𝑘 ≅ 𝑥𝑘𝑒𝑗𝑗𝑘 + 𝑤𝑘, 

where ϕk = ϕ(kT). Hence frequency and phase synchronization and SNR estimation can be 
performed at channel symbol time. 

In light of this assumption, the synchronization scheme that has been analyzed in the 
following sections is the one shown in figure 5-5, where 

– frequency synchronization is carried out with a Frequency Locked Loop (FLL) that 
estimates the frequency on the FM; 

– phase synchronization is carried out with a data-aided phase estimator operating on 
the FM and the pilots, with linear interpolation of the phase between pilot fields; and 

– SNR estimation with Digital Automatic Gain Control (DAGC) is based on estimators 
of the received average power. 
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Subsections 5.4–5.8 show the design and performance analysis of the adopted algorithms, 
starting from the final stage and continuing to the first stage. At each stage, design and 
performance analyses are carried out assuming perfect synchronization of the previous 
stages. Hence 5.4 focuses on the frame descriptor decoding assuming perfect estimation of 
frequency, phase, and SNR, while 5.8 considers the performance of the full chain. 

As illustrated, this receiver is just a reference and is not considered to be optimal. Clock 
recovery (timing) and FM acquisition have been not considered in the simulation model 
adopted, since they are believed to be straightforward. For instance, Gardner’s timing 
recovery in reference [5] and the frame synchronization techniques based on correlation 
shown in reference [6] can be easily adopted. 

 

Figure 5-5:  Synchronization Scheme Adopted for Performance Evaluation 

5.4 FRAME DESCRIPTOR DECODING 

 

Figure 5-6: Highlight of the Section of the Synchronization Scheme That Is Analyzed 
for FD Decoding 

The synchronization chain is analyzed starting from the last stage as shown in figure 5-6, that 
is, at the demodulator input that computes LLRs for SCCC turbo decoding. At this stage, FD 
decoding is performed before constellation de-mapping. 

Assuming perfect synchronization in terms of all previous stages, the performance of the FD 
code described in 2.2.2 has been analyzed for two different implementations of the FD 
decoder: a Maximum Likelihood (ML) soft decoder versus an ML hard decoder. In turn, for 
both hard and soft decoding, two cases have been considered: 

– a decoding approach, which knows that the 7th information bit b7 of the FD is ‘0’ (as 
currently set by the Recommended Standard); or 

– a future-proof decoding approach, which assumes b7 as an extra bit of information to 
be decoded. 

For these four cases, figure 5-7 shows the FD error rate as a function of Es/N0. It can be seen 
that the hard implementation achieves the FD error rate equal to 1e − 5 at Es/N0 ≅ −2 dB, that 
is, 1.4 dB below the minimum Es/N0 required for decoding all ACM formats (see table 3-1). 
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Instead, a soft implementation of the FD decoder allows an extra 2 dB of margin, achieving 
an FD error rate equal to 1e − 5 at Es/N0 ≅ −4 dB. Finally, it can be observed that for both the 
soft and hard decoding, the knowledge of b7 allows a small improvement of 0.2 dB.  

 

Figure 5-7: FD Error Rate with Hard and Soft Decoding and Whether Bit b7 
(Currently Set to ‘0’ in Reference [1]) Is Known at the Receiver 

5.5 SNR ESTIMATOR AND DAGC 

 

Figure 5-8: Highlight of the Section of the Synchronization Scheme That Is Analyzed 
for SNR Estimation and DAGC 

In this subsection, the synchronization chain is analyzed and simulated starting at the input of 
the DAGC and the SNR estimator as shown in figure 5-8, assuming perfect frequency and 
phase synchronization. 

The block diagram of this stage is shown in figure 5-9. Its objective is to amplify the signal at 
the output of the phase synchronization (hereafter denoted by rk) such that the channel 
symbols at the demodulator input have power Pref. Without loss of generality, Pref was chosen 
so that channel symbols at the demodulator input would have unitary power; that is, 
Pref  = 1 + 1/(Es/N0). It should be noted that the SNR estimator and DAGC operate 
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exclusively on the FM with removed modulation, that is, by performing a multiplication 
𝑟𝑘𝑥p,𝑘

∗ , where 𝑥p,𝑘
∗  is the complex conjugate of the kth FM channel symbol. 

 

Figure 5-9: Detailed Block Diagram of the Combined Interaction between SNR 
Estimator and DAGC 

For computing the SNR, a simple average power estimator was adopted as shown in 
figure 5-10. In particular, the average of the in-phase component of 𝑟𝑘𝑥p,𝑘

∗  (the real part of the 
complex baseband model) is proportional to the square root of the energy-per-channel-symbol, 
that is, 

𝐸�ℛ(𝑟𝑘𝑥p,𝑘
∗ )� ∝ �𝐸s  , 

while 

𝐸�ℛ2(𝑟𝑘𝑥p,𝑘
∗ )� ∝ 𝐸s + 𝑁0/2 . 

Hence combining the two expressions above, the SNR can be found as 

𝑆𝑁𝑆 =
𝐸s

𝑁0
=

𝑏2

2(𝑎 − 𝑏2)
 , 

where 𝑎 = 𝐸�ℛ2(𝑟𝑘𝑥p,𝑘
∗ )� and 𝑏 = 𝐸�ℛ(𝑟𝑘𝑥p,𝑘

∗ )�. 

 

Figure 5-10:  Adopted SNR Estimator 
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For the DAGC, a simple closed-loop algorithm was adopted as shown in figure 5-11. In 
particular, the gain Gk is updated as 

Gk = Gk − 1 + ekγDAGC , 

where γDAGC is the open-loop gain, while ek is the error, defined as 

ek = | Gkrk |
2 − Pref . 

 

Figure 5-11:  Adopted Closed-Loop DAGC 

Assuming perfect synchronization of the previous stages, the joint SNR estimator and DAGC 
have been simulated. 

Figure 5-12 shows the convergence of the adopted SNR estimation. The estimated SNR is 
compared with the real SNR by varying the number of PL frames NF. It can be seen that, 
already at the first frame (i.e., by using only the first 256 FM channel symbols), the SNR 
estimator is able to provide a good estimation if Es/N0 < 8 dB, while for higher Es/N0, the 
estimation tends to diverge. It can be shown mathematically that this divergence is common 
to all SNR estimators, since an increase of the SNR makes the noise power level to be 
estimated more and more as negligible (reference [8]). Hence for reducing the error, it is 
sufficient to adopt a higher number of frames, and already at 5-6 frames, the estimation is 
perfect in the full SNR range for all ACM formats. 

Figures 5-13 and 5-14 show instead the convergence of the adopted closed-loop DAGC at 
low and high SNRs; namely, Es/N0 = −1.4 dB (equivalent to Eb/N0 ≅ 0 for ACM format 1) 
and Es/N0 = −18.5 dB (equivalent to Eb/N0 ≅ 11.2 for ACM format 27). The convergence has 
been analyzed for different closed-loop gain γDAGC. It is well known that for first-type closed-
loops, the γDAGC is be selected as a trade-off between convergence speed and residual error 
(reference [9]).  By means of a preliminary coarse optimization, γDAGC = 1/160 has been 
found the best for limiting the noise and achieving convergence by means of a single frame 
(for all ACMs); that is, BER/CER curves show no losses with respect to the case with ideal 
synchronization. 
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Figures 5-15 and 5-16 show the CER when using the joint SNR estimator and DAGC. CER 
is shown as a function of the Eb/N0 for a subset of the ACM formats, that is, ACM formats 1 
and 6 (QPSK modulated), 12 (8PSK), 17 (16APSK), 22 (32APSK), and 27 (64APSK). For 
comparison, the CER with perfect synchronization is also shown (colored solid lines). It can 
be seen that the adopted algorithms are able to synchronize almost perfectly, with near-
optimal performance, while a poor selection of γDAGC can cause a non-negligible loss. 

 

Figure 5-12: Estimated SNR versus Real SNR for Different Number of PL Frames Adopted 
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Figure 5-13: Convergence of the DAGC Gain at Es/N0 = −1.4 dB (Eb/N0 = 0.0 dB for 
ACM 1) 

 

Figure 5-14: Convergence of the DAGC Gain at Es/N0 = 18.5 dB (Eb/N0 = 11.2 dB for 
ACM 27) 
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Figure 5-15: CER for ACM 1, 17, and 22 (PSK Modulations), for Different Values of 
the DAGC Loop Gain 

 

Figure 5-16: CER for ACM 1, 17, and 22 (APSK Modulations), for Different Values 
of the DAGC Loop Gain 
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5.6 PHASE SYNCHRONIZATION 

 

Figure 5-17: Highlight of the Section of the Synchronization Scheme That Is 
Analyzed for Phase Synchronization 

In this subsection, the synchronization chain is analyzed and simulated starting at the input of 
the phase synchronizer, shown in figure 5-17, assuming perfect frequency synchronization. 

The adopted algorithm is based on a ML estimator operating on the frame marker and pilot 
fields. The estimated phase values are then linearly interpolated between fields. It should be 
noted that this algorithm operates at PL frame level, and hence it can be carried out 
independently frame by frame. 

Concerning the ML estimation, if {rk} is (with a little abuse of notation) the signal sampled at 
the input of the phase synchronizer, with k = 1 identifying the first channel symbol of the PL 
frame, the phases on each mth pilot field are estimated as 

𝜃p
(𝑚) = angle��𝑟𝑘 + 𝑖𝑥p,𝑘 + 𝑖

∗
15

𝑖=0

�   ,          𝑚 = 1”,” … , 16
𝑘 = 556𝑚 + 305  . 

Similarly, the phase estimation on the FM is carried out with the formula above by dividing 
the FM in blocks of 16 symbols each. This approach has been found to be a good trade-off 
for limiting the impact of possible residual frequency errors after frequency synchronization 
on the FM that is then adopted for SNR estimation. 

Between two phase estimates (separated by 540 channel symbols), 𝜃p
(𝑚) and 𝜃p

(𝑚+1), a linear 
interpolation is performed. Hence the phase on the channel symbols can be estimated as 

𝜃𝑘+ℓ =
(𝜃p

(𝑚+1) − 𝜃p
(𝑚))

541
ℓ + 𝜃p

(𝑚)     ,     𝑘 = 556𝑚 + 320
ℓ = 1, … ,540    , 

where sum and subtraction are performed as modulo operation in the co-domain (−π, π) for 
taking into account phase wraps (reference [10]). 

Figure 5-18 shows a sketch on how the adopted phase synchronization algorithm works:  
Assuming a phase-noise process as depicted in purple, the estimator provides a constant 
phase on the pilot fields, that is, 𝜃p

(1), 𝜃p
(2), …, which are then linearly interpolated, as shown 

by the green solid line. On the FM, as mentioned, the estimation is done instead in chunks of 
16 channel symbols. Hence only the estimation provided by the last 16 FM channel symbols 
is then interpolated with 𝜃p

(1). 
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Figure 5-18:  Sketch of the Phase Linear Interpolation 

Figures 5-19 and 5-20 show the CER when using the phase synchronization algorithm 
discussed. CER is shown as a function of the Eb/N0 for a subset of the ACM formats, that is, 
ACM formats 1 and 6 (QPSK modulated), 12 (8PSK), 17 (16APSK), 22 (32APSK), and 27 
(64APSK). It can be seen that the adopted algorithm is able to synchronize with a loss 
between 0.2–0.4 dB with respect to AWGN with ideal synchronization. 

It is interesting to note that by increasing the SNR, the loss from AWGN curves does not tend 
to decrease. In fact, although at higher SNR the phase estimation improves, the adopted 
ACM formats rely on high-cardinality APSK constellations and on high-rate SCCC, thus 
providing less tolerance to phase errors. On the other hand, at low SNR, the adopted phase 
estimator provides a noisy estimation that is mitigated only thanks to low cardinality and 
low-rate SCCC. This can be better seen from figures 5-21 to 5-24. In these figures, a 
realization of the phase noise is shown versus the phase estimated by the proposed algorithm 
at low SNR (Eb/N0 = 1.3 dB for ACM format 1) and high SNR (Eb/N0 = 12.3 dB for ACM 
format 27), and with and without a frequency shift (250 Hz, arbitrary value just for 
illustration purposes). At low SNR, the phase estimator performance is very poor and tends to 
follow only low-frequency components, but as mentioned, the ACM format is well protected 
by QPSK with low-rate SCCC. At high SNR, the phase estimator performance improves, but, 
as shown by CER curves, the ACM format is more sensitive to the residual phase error. 

As already pointed out in previous sections, the phase synchronization can be improved; 
hence the proposed algorithm is not considered to be optimal. For instance, a possible 
alternative that could improve results for certain ModCods is the use of a Phase-Locked Loop 
(PLL) that is data-aided on FM and pilot fields and decision-directed on the other channel 
symbols. 
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Figure 5-19: CER for ACM Format 1, 6, and 12 (PSK Modulations) in Presence of 
Phase Noise and Using a Phase Synchronizer with Linear Interpolation 

 

Figure 5-20: CER for ACM Format 17, 22, and 27 (APSK Modulations) in Presence of 
Phase Noise and Using a Phase Synchronizer with Linear Interpolation 
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Figure 5-21:  Phase Noise versus Tracked Phase for ACM 1 at Eb/N0 = 1.3 dB 

 

Figure 5-22:  Phase Noise versus Tracked Phase for ACM 27 at Eb/N0 = 12.3 dB 
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Figure 5-23: Phase Noise with Frequency Shift of 250 Hz versus Tracked Phase for 
ACM 1 at Eb/N0 = 1.3 dB 

 

Figure 5-24: Phase Noise with Frequency Shift of 250 Hz versus Tracked Phase for 
ACM 27 at Eb/N0 = 12.3 dB 

  

−180
−160
−140
−120
−100

−80
−60
−40
−20

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0  20000  40000  60000  80000  100000  120000  140000

Ph
as

e 
[d

eg
]

channel symbol

Phase Noise
Estimated Phase

−180
−160
−140
−120
−100

−80
−60
−40
−20

 0
 20
 40
 60
 80

 100
 120
 140
 160
 180

 0  20000  40000  60000  80000  100000  120000  140000

Ph
as

e 
[d

eg
]

channel symbol

Phase Noise
Estimated Phase



CCSDS REPORT CONCERNING SCCC—SUMMARY OF DEFINITION AND PERFORMANCE 

CCSDS 130.11-G-2 Page 5-17 May 2023 

5.7 FREQUENCY SYNCHRONIZATION 

 

Figure 5-25:  Synchronization Scheme That Is Analyzed for Frequency Synchronization 

In this subsection, the frequency synchronization is analyzed for the chain shown in 
figure 5-25, in which all the following stages are the ones studied in previous sections. 

 

Figure 5-26:  Adopted FLL 

The adopted frequency synchronization algorithm is based on a digital second-type FLL 
working at frame level, as shown in figure 5-26. The frequency detector computes the error ef 
between real and estimated frequency. The error is then fed to a loop filter, characterized by 
the gains k1 and k2 and excess delay equal to D = 2 (for taking into account a possible process 
delay of real implementations; see reference [9]). It should be noted that when k2 = 0, the 
FLL is reduced to the first type. 

With regard to the frequency detector, a Fast Fourier Transform (FFT) approach has been 
adopted. Namely, a FFT with 1024 points was done on the 256 channel symbols of the FM. 
With abuse of notation, if {rk} is defined as the sequence of samples at the input of the 
frequency synchronizer (with k = 1 identifying the first channel symbol of the PL frame 
under processing), the FFT operation reads 

𝑆ℓ = �𝑟𝑘𝑥p,𝑘
∗

256

𝑘=1

𝑒−𝑗2𝜋(𝑘−1) ℓ
1024    ,         ℓ = −511, … ,0, … , 512, 

where 𝑥p,𝑘
∗  is the complex conjugate of the kth FM channel symbol. The magnitude of 𝑆ℓ 

provides information about the frequency bin cantered in ℓ𝑆𝑐ℎ𝑠/1024. Hence the frequency 
error can be estimated as 

𝑒𝑓 = argmax ℓ|𝑆ℓ|. 
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However, this method is limited by the resolution of the FFT. Hence for improving the 
resolution of ef , Newton interpolation is done around the maximum. 

 

Figure 5-27:  Linearized Scheme of the Adopted FLL 

For this FLL, it can be demonstrated that the linearized equivalent scheme is the one shown 
in figure 5-27. Such an FLL has a noise bandwidth BL well approximated by the following 
formula (reference [9]): 

𝐵L ≅
𝑆FM

4
(𝑘1 + 𝑘2), 

where RFM is the number of FMs (or PL frames) per second, that is, RFM = Rchs/133760 (when 
using pilot fields), while the SNR in the loop is given by 

SNRFLL =
𝐸s𝑆FM256
𝑁0𝐵L

. 

Considering that, for stability reasons, (k1 + k2) < 1, and that Es/N0 > −0.6 dB for all ACM 
formats (see AWGN results in 3.3), at 100 MBaud it holds that BL < 186.9 Hz, hence 

SNRFLL > 29.5 dB. 

In other terms, the adopted FLL works in almost noiseless conditions. This can be easily seen 
by the following figures. Figure 5-28 shows the theoretical convergence of the frequency 
error of the FLL linearized scheme for different k1 (k2 = 0 for the sake of simplicity), for 
constant Doppler shift. Figure 5-29 shows instead the convergence of the frequency error for 
the adopted FLL with an FFT-based frequency detector and when simulating the ACM 
format in noisy conditions (Es/N0 = −0.9 dB, that is, Eb/N0 = −0.6 dB for ACM format 1). It 
can be seen that the real convergence has a perfect match with the theoretical convergence, 
proving that noise has no impact. 
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Figure 5-28: Theoretical Frequency Error Convergence (in Absence of Thermal Noise) 
for the Linearized Scheme When (Left to Right) k1 is 0.1, 0.2, 0.4, and 0.8 

 

Figure 5-29: Simulated Frequency Error Convergence Es/N0 = −0.9 dB 
(Eb/N0 = 0.6 dB for ACM1) 

For tuning the FLL coefficients k1 and k2, the FLL has been tested with the Doppler profiles 
described in 5.2. For Doppler shifts up to 1 MHz, and Doppler rate 50 kHz/s, it has been 
found that an FLL of the first type k1 = 0.2, k2 = 0 is more than sufficient, since the residual 
error due to Doppler rate is compensated by the phase synchronizer. Hence the FLL can be 
simplified in favor of the adopted phase synchronization algorithm. For the reader’s 
reference, the detailed analysis of the FLL tuning is reported in annex A. 
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5.8 NUMERICAL RESULTS 

The performance results of the Recommended Standard’s modulation and coding scheme has 
been evaluated over the AWGN channel affected by the phase noise and Doppler of 5.2, and 
with the synchronization chain described in previous sections. 

Figures 5-30 and 5-31 show the CER as function of the Eb/N0 for a subset of the ACM 
formats, that is, ACM formats 1 and 6 (QPSK modulated), 12 (8PSK), 17 (16APSK), 22 
(32APSK), and 27 (64APSK). For comparison, the CER with perfect synchronization is also 
shown (colored solid lines). It can be seen that the adopted algorithms are able to synchronize 
with a performance loss between 0.2–0.4 dB (at CER = 1e − 4) with respect to AWGN with 
ideal synchronization. Finally, it should be noted that CER has also been computed adopting 
the triangular Doppler profile, and identical results were found. 

 

Figure 5-30: CER for ACM Format 1, 6, and 12 (PSK Modulations) in Presence of 
Sinusoidal Doppler Profile (fD = 1 MHz, fR = 50 kHz/sec) and Phase 
Noise When Using the Described Synchronization Chain 
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Figure 5-31:  CER for ACM Format 17, 22, and 27 (APSK Modulations) in Presence 
of Sinusoidal Doppler Profile (fD = 1 MHz, fR = 50 kHz/sec) and Phase 
Noise When Using the Described Synchronization Chain 
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6 END-TO-END SIMULATIONS 

6.1 INTRODUCTION 

In this section, the performance of the recommended codes and modulations is evaluated by 
means of end-to-end simulations. In particular, this section considers the nonlinear channel of 
section 4 and the synchronization chain of section 5. The optimal input and IBO/OBO is re-
verified by means of the TD provided in 6.2. This is done to verify the possible increase of the 
required back-off for making the synchronization chain work in the presence of nonlinear 
distortions. Then performance is assessed for all 27 ACM formats in 6.3, in which it is also 
shown how pre-distortion can improve the performance, especially for ACMs 13–27, which use 
APSK modulations. 

6.2 TOTAL DEGRADATION 

As in section 4, the adopted TD definition for end-to-end simulations is defined as 

TD = �
𝐸b

𝑁0
+ OBO�

E2E
− �

𝐸b

𝑁0
�
AWGN

      [dB], 

where �𝐸b
𝑁0

+ OBO�
E2E

 is the SNR and OBO required for obtaining a specific target CER with 

the assumed channel model and receiver. The value �𝐸b
𝑁0
�
AWGN

 instead represents the SNR 

required on the ideal AWGN channel with ideal synchronization to achieve the same target 
CER. A target CER equal to 10−4 has been adopted. It should be noted that, unlike in 
section 4, TD provides a useful representation of the overall losses experienced by the link in 
terms of distortion as well as reduced available power due not only to the back-off but also 
the synchronization in the presence of phase noise and Doppler. Hence the optimal IBO/OBO 
is found as the value that minimizes TD (see 4.3 for optimization examples). 

6.3 NUMERICAL RESULTS 

6.3.1 TOTAL DEGRADATION AND ERROR RATE CURVES 

Figure 6-1 shows the TD for a subset of the ACM formats as a function of the IBO, in 
particular, ACM formats 1 and 6 (QPSK modulated), 12 (8PSK), 17 (16APSK), and 22 
(32APSK). For comparison, the TD with ideal synchronization (results of 4.4.1) has been 
reported. From the figure, it can be seen that optimal IBO/OBO is approximately still the 
same as the one found when using ideal synchronization. On the other hand, a performance 
loss between 0.2 dB and 0.8 dB is found resulting from the synchronization in the presence of 
phase noise, Doppler, and nonlinear distortions. 
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Figure 6-1:  TD (End-to-End) for ACM Formats 1, 6, 12, 17, and 22 

Different conclusions were found for ACM formats 23 to 27, which are based on the 64APSK. 
Figure 6-2 shows the TD as a function of IBO compared with ideal synchronization (results of 
4.4.1). It can be seen that the synchronization chain for the 64APSK is highly penalized by 
nonlinear effects and that, even increasing the back-off, losses as high as 2 dB can be 
experienced. The reason for such a penalty has been found in the phase synchronizer. In 
particular, the adopted phase synchronization algorithm relies on the estimation done on the 
FMs and pilots whose I/Q amplitude with respect to 64APSK channel symbols is as shown in 
figure 6-3. Hence after phase synchronization, the I/Q samples (see figure 6-3) of the 
intermediate circles will be well aligned with respect to the original constellation, while the 
external circle (representing 43 percent of the probability) will be misaligned. As further 
evidence, the CER for the ACM format 27 has been computed in figure 6-4 when different 
impairments are enabled step by step. It can be seen that the figure confirms that the loss is 
mostly due to the phase synchronization in presence of nonlinearities, while the fraction of loss 
due to phase noise is similar to the one seen in the linear channel in 5.6. Hence for 64APSK, 
the use of pre-distortion at the transmitter (discussed in the next section) appears almost 
mandatory. 
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Figure 6-2:  TD (End-to-End) for ACM Formats from 23 till 27 (64APSK) 

 

Figure 6-3: Scattering at the Demodulator Input for ACM27 at Eb/N0 = 17.5 dB, 
IBO = 14 dB 
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Figure 6-4:  CER for ACM Format 27, IBO = 14 dB, for Different Impairments 

In figures 6-5 to 6-8, the BER and CER are shown for all the possible ACM formats using 
the optimal IBO found by means of the TD analysis. The corresponding SNR thresholds for 
CER equal to 10−4 and OBO for each individual ACM mode (to be taken into account when 
performing system level design) can be found in table 6-1. 

 

Figure 6-5: BER (End-to-End) for ACM Formats from 1 to 12 (PSK Modulations) 
with the Optimal IBO 
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Figure 6-6: CER (End-to-End) for ACM Formats from 1 to 12 (PSK Modulations) 
with the Optimal IBO 

 

Figure 6-7: BER (End-to-End) for ACM Formats from 13 to 27 (APSK Modulations) 
with the Optimal IBO 
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Figure 6-8: CER (End-to-End) for ACM Formats from 13 to 27 (APSK Modulations) 
with the Optimal IBO 

10−4

10−3

10−2

10−1

100

 5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20

C
ER

Eb/N0 [dB]

ACM 13
ACM 14
ACM 15
ACM 16
ACM 17
ACM 18
ACM 19
ACM 20
ACM 21
ACM 22
ACM 23
ACM 24
ACM 25
ACM 26
ACM 27



CCSDS REPORT CONCERNING SCCC—SUMMARY OF DEFINITION AND PERFORMANCE 

CCSDS 130.11-G-2 Page 6-7 May 2023 

Table 6-1: SNR Thresholds for CER = 1e − 4 and Corresponding OBO, TD, and 
Bandwidth (for SRRC Roll-Off 0.35 after RF Filtering), Achieved by the 
Recommended ACM Formats with SRRC Roll-Off 0.35 in End-to-End 
Simulations and without Pre-Distortion 

 ACM  Es/N0 [dB] Eb/N0 [dB] OBO [dB] TD [dB] Bandwidth 

Q
PSK 

1 0.08 1.57 0.32 0.98 1.29 ∙ Rchs 
2 1.04 1.70 0.32 0.94 1.29 ∙ Rchs 
3 2.22 2.05 0.32 0.94 1.29 ∙ Rchs 
4 3.29 2.47 0.32 0.90 1.29 ∙ Rchs 
5 4.42 2.99 0.32 0.91 1.29 ∙ Rchs 
6 6.06 3.94 0.32 0.96 1.29 ∙ Rchs 

8PSK 

7 4.57 3.14 0.29 0.95 1.29 ∙ Rchs 
8 5.80 3.68 0.29 0.99 1.29 ∙ Rchs 
9 6.97 4.32 0.29 1.01 1.29 ∙ Rchs 
10 8.50 5.28 0.36 1.11 1.27 ∙ Rchs 
11 10.15 6.41 0.36 1.30 1.27 ∙ Rchs 
12 12.19 7.97 0.36 1.65 1.27 ∙ Rchs 

16APSK 

13 9.62 5.87 1.34 2.78 1.24 ∙ Rchs 
14 10.87 6.65 1.34 2.97 1.24 ∙ Rchs 
15 12.01 7.39 1.63 3.30 1.23 ∙ Rchs 
16 13.68 8.63 1.63 3.76 1.23 ∙ Rchs 
17 15.46 10.02 1.99 4.43 1.21 ∙ Rchs 

32APSK 

18 13.77 8.72 3.12 5.43 1.20 ∙ Rchs 
19 15.15 9.71 3.12 5.75 1.20 ∙ Rchs 
20 16.00 10.18 3.68 6.19 1.19 ∙ Rchs 
21 17.04 10.90 4.27 6.69 1.18 ∙ Rchs 
22 19.14 12.66 4.27 7.37 1.18 ∙ Rchs 

64APSK 

23 17.17 11.02 4.21 6.64 1.18 ∙ Rchs 
24 18.05 11.57 4.88 7.19 1.18 ∙ Rchs 
25 19.14 12.36 5.61 7.92 1.17 ∙ Rchs 
26 20.22 13.17 6.40 8.77 1.17 ∙ Rchs 
27 21.72 14.40 7.22 9.84 1.17 ∙ Rchs 
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6.3.2 STATIC PRE-DISTORTION 

The TD can be effectively decreased by means of pre-distortion for those ACM formats using 
APSK modulations (17–27). A static data pre-distorter (at the transmitter), such as the one in 
reference [3], was assumed for the simulations presented in this section. Such pre-distortion 
is basically a simple look-up table that transmits the constellation symbols with a fixed 
correction of the radii amplitudes and phases (computed off-line). 

Figure 6-9 shows the TD for a subset of the ACM formats as a function of the IBO, in 
particular, ACM formats 17 (16APSK), 22 (32APSK), and 27 (64APSK). For comparison, 
the TD with ideal synchronization (results of 4.4.2) and without pre-distortion (previous 
section) have been reported. From the figure, it can be seen that when using pre-distortion, 
the optimal IBO/OBO is approximately the same derived for ideal synchronization. In 
particular, an increase of 0.6 dB in OBO has been found as worst case. On the other hand, a 
performance loss between 0.7 dB and 1.0 dB has been found resulting from the 
synchronization when in presence of phase noise, Doppler, and nonlinear distortions. 

 

Figure 6-9:  TD (End-to-End) for ACM Formats 17, 22, and 27, with Pre-Distortion 

Similarly to the previous subsection, the loss from ideal synchronization was investigated in 
detail. In particular, the loss with respect to ideal synchronization has been found to be due to 
two main components: the presence of phase noise and the use of a phase synchronizer 
operating on the FM and pilots (see previous section for detailed discussion on the phase 
synchronizer). This is proven by the example in figure 6-10 that shows the CER for ACM 
format 27 when the different impairments are enabled one by one. 
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Figure 6-10: CER for ACM Format 27, with Static Pre-Distortion, IBO = 9 dB, for 
Different Impairments 

Figures 6-11 and 6-12 and show the BER and CER for all the possible ACMs using the 
optimal IBO found by means of the TD analysis. Finally, the SNR values for APSK 
modulations that allow a CER equal to 10−4 when static pre-distortion is adopted are 
summarized in table 6-2. Also reported in the table are the corresponding OBO, TD, and its 
gain with respect to the scenario without pre-distortion (i.e., table 6-1). 
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Figure 6-11: BER (End-to-End), with Static Pre-Distortion, for ACM Formats from 
13 to 27 (APSK Modulations) with the Optimal IBO 

 

Figure 6-12: CER (End-to-End), with Static Pre-Distortion, for ACM Formats from 
13 to 27 (APSK Modulations) with the Optimal IBO 

10−6

10−5

10−4

10−3

10−2

10−1

100

 5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20

B
ER

Eb/N0 [dB]

ACM 13
ACM 14
ACM 15
ACM 16
ACM 17
ACM 18
ACM 19
ACM 20
ACM 21
ACM 22
ACM 23
ACM 24
ACM 25
ACM 26
ACM 27

10−4

10−3

10−2

10−1

100

 5  6  7  8  9  10  11  12  13  14  15  16  17  18  19  20

C
ER

Eb/N0 [dB]

ACM 13
ACM 14
ACM 15
ACM 16
ACM 17
ACM 18
ACM 19
ACM 20
ACM 21
ACM 22
ACM 23
ACM 24
ACM 25
ACM 26
ACM 27



CCSDS REPORT CONCERNING SCCC—SUMMARY OF DEFINITION AND PERFORMANCE 

CCSDS 130.11-G-2 Page 6-11 May 2023 

Table 6-2: SNR Thresholds for CER = 1e − 4 and Corresponding OBO, TD, and 
Bandwidth (for SRRC Roll-Off 0.35 after RF Filtering), Achieved by the 
Recommended ACM Formats with SRRC Roll-Off 0.35 in End-to-End 
Simulations and with Pre-Distortion 

 ACM  Es/N0 [dB] Eb/N0 [dB] OBO [dB] TD [dB] TD Gain [dB] Bandwidth 

16APSK
 

13 9.59 5.84 0.99 2.40 0.38 1.31 ∙ Rchs 

14 10.92 6.70 0.99 2.67 0.30 1.31 ∙ Rchs 

15 11.91 7.28 1.14 2.71 0.59 1.27 ∙ Rchs 

16 13.14 8.08 1.36 2.95 0.82 1.24 ∙ Rchs 

17 14.81 9.37 1.65 3.44 0.99 1.23 ∙ Rchs 

32APSK
 

18 12.75 7.70 2.34 3.63 1.79 1.22 ∙ Rchs 

19 14.08 8.64 2.34 3.90 1.85 1.22 ∙ Rchs 

20 14.97 9.15 2.74 4.22 1.97 1.21 ∙ Rchs 

21 16.36 10.21 2.74 4.48 2.21 1.21 ∙ Rchs 

22 17.96 11.49 3.14 5.06 2.30 1.20 ∙ Rchs 

64APSK
 

23 16.39 10.24 2.59 4.25 2.39 1.20 ∙ Rchs 

24 17.34 10.87 3.08 4.68 2.50 1.20 ∙ Rchs 

25 18.48 11.69 3.62 5.27 2.65 1.19 ∙ Rchs 

26 19.56 12.52 4.23 5.94 2.83 1.18 ∙ Rchs 

27 21.54 14.22 4.24 6.68 3.16 1.18 ∙ Rchs 
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7 TEST RESULTS 

In this section, results of the compatibility testing between one transmitter and one receiver 
implementing CCSDS 131.2-B are reported. Out of the transmitter/receiver models 
developed under ESA contracts or other means, the tests reported herein refer to an 
Engineering Model (EM) transmitter (see figure 7-1) developed by Tesat Spacecomm (DE) 
and one receiver developed by Kongsberg Spacetec (NO) (reference [11]). 

 

Figure 7-1:  Tesat Transmitter EM 

The test setup used in the measurement campaign is shown in figure 7-2 and includes a K-
band TWTA (EM) as well as a noise source and other elements, as appropriate. The tests 
were performed at K-band (26.25 GHz), with a 500 MBaud signal generated by the EM 
transmitter, amplified by the TWTA, down-mixed to Intermediate Frequency (IF) (1.2 GHz, 
where noise was added), and demodulated and decoded by the receiver. 

The setup was used extensively for the verification of the EM transmitter and the receiver. A 
minimal subset of results is reported here, for information. 
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Figure 7-2:  End-to-End Test Setup 

A scatter plot obtained with 64APSK modulation is shown in figure 7-3, comparing the 
results over a linear channel (w/o TWTA) with the measurement taken with the TWTA 
(back-off of 2.8 dB). The modulator employed a digital pre-distortion technique with better 
performance than the one used for the simulations shown in the previous section. 
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Figure 7-3: Modulator in 64APSK Mode, without TWTA (Left-Side) and with 
TWTA (2.8 dB Back-Off) 

The modulator phase noise was measured in different configurations (e.g., central 
frequencies), always resulting in lower than 1 deg rms when integrated between 10 kHz and 
250 MHz. As an example, a snapshot of the phase noise measurement taken for a central 
frequency of 26.25 GHz is shown in figure 7-4. 

 

Figure 7-4:  Modulator Phase Noise (26.25 GHz, Ambient) 
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BER measurement results are shown in figure 7-5, in which one ModCod for each 
modulation order is included, with channel symbol rate set at 500 MBaud. Different back-off 
values are used for the different modulations, with a maximum of 2.8 dB for the 64APSK 
case. 

 

Figure 7-5:  BER Performance 

Reference results5 (without impairments other than Gaussian noise) are compared with the 
actual measurement taken with or without the TWTA in the chain. The latter case shows the 
overall (transmitter/receiver) implementation losses as well as the impact of phase noise and 
other imbalances, while the former shows the degradation introduced by the non-linear 
amplification (the back-off should be added to this to obtain the TD, as in the previous 
section). 
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8 CONCLUSIONS 

This Report provided additional informative material for reference [1]. 

Section 2 covered a tutorial overview of the CCSDS specification in reference [1], with a 
description of the main functions and parameters. 

Section 3 assessed the performance of the recommended codes and modulations by means of 
BER/CER curves on the AWGN channel, assuming ideal synchronization. 

Section 4 provided the performance of the recommended codes and modulations in the 
presence of nonlinear distortion, aimed at modelling nonlinear effects due to amplification. A 
preliminary optimization of the IBO/OBO and assessment of occupied bandwidth (99 percent 
of the signal power) were carried out and performance reported by means of BER/CER 
curves. The same section also showed that pre-distortion at the transmitter can noticeably 
improve the performance for those ACM formats using APSK modulations. 

Section 5 focused on the synchronization for the recommended codes and modulations. A 
possible synchronization chain was provided and performance evaluated on the linear 
AWGN channel in presence of phase noise, Doppler shift, and Doppler rate. The section 
showed that synchronization can be achieved with a loss less than 0.4 dB with respect to 
AWGN results. 

Finally, section 6 provided performance of the full chain (end-to-end) when the channel is 
nonlinear, as in section 4, with the synchronization chain specified in section 5 adopted. The 
section showed that in the absence of pre-distortion, the AM/PM effect can impair the phase 
synchronization, causing huge performance losses on the ACM formats using APSK 
modulations (especially 64APSK). In contrast, if pre-distortion at the transmitter was 
adopted, the performance analysis showed on the nonlinear channel a loss (worst case) 
limited to 1 dB with respect to ideal synchronization. Hence the use of pre-distortion at the 
transmitter appeared mandatory. As a validation of the simulation campaign, section 7 
reported a subset of the results obtained with an extensive test campaign performed for the 
performance validation of one transmitter model and one receiver developed under ESA 
contracts. 
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ANNEX A 
 

FLL TUNING FOR THE REFERENCE RECEIVER 

This annex shows the detailed analysis that has been carried out for tuning the FLL presented 
in 5.7, the linearized model of which is shown again, for the reader’s convenience, in 
figure A-1. 

 

Figure A-1:  Linearized Scheme of the Adopted FLL 

The FLL has been first tested considering k2 = 0, that is, an FLL of the first type, to see if the 
residual frequency error due to Doppler rate is still acceptable. As mentioned, the FLL 
operates in near noise-free conditions; hence when considering an FLL of the first type, the 
coefficient k1 can be selected as the value providing the best convergence and stability. This 
can be easily done by means of the root locus, as shown in figure A-2, in which it is shown 
that for k1 ∈ [0,0.25], the roots are real and provide a damped convergence, while for 
k1 ∈ [0.25,1.0), the roots are a complex conjugate, and the response is undamped. Figure A-3 
shows exactly this behavior when the FLL with FFT-based frequency detector is simulated 
for the ACM format 1 at low SNR (Es/N0 = −0.9 dB, that is, Eb/N0 = 0.6 dB for ACM format 
1). Hence for tuning the first-type FLL, k1 = 0.2 was selected. 
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Figure A-2:  Root Locus for the First-Type FLL 

 

Figure A-3: Simulated Frequency Error Convergence at Es/N0 = −0.9 dB 
(Eb/N0 = 0.6 dB for ACM1) 

Once the FLL first-type has been tuned, the residual error due to Doppler rate is assessed. It 
can be shown that for this FLL, the error is given by 

𝑒𝑓 =
𝑓R

𝑘1𝑆FM
   , 

where RFM is the number of FMs per second; that is, RFM = Rchs/133760 (when using pilot 
fields), and fR is the Doppler rate. Hence when considering a Doppler rate (worst case) of 50 
kHz/s and channel symbol rate Rchs = 100 MBaud, it holds that the residual error ef when 
using an FLL of the first type is 

ef < 334.4 Hz. 
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Normally, this could require the use of a second-type FLL. However, the adopted phase 
estimator (see 5.6), because of the linear interpolation, can correct a residual frequency error 
as long as this is under the maximum slope of the linear interpolation. As already discussed, 
the linear interpolation is able to interpolate a maximum phase variation of ±π over 540 
channel symbols. Hence the maximum residual frequency error acceptable at the phase 
synchronizer is given by 

1
2𝜋

⋅
𝜋Rchs

540
= 92.6 kHz. 

It should be noted that this value is well above the residual error ef = 334.4 Hz, meaning that 
a first-type FLL with k1 = 0.2 and k2 = 0 is sufficient for the considered scenarios. 

As further proof, simulations of the full synchronization chain were done to check the 
maximum acceptable Doppler rate. Figure A-4 shows the measured residual frequency error 
as a function of the time (reported as PL frame number) at Es/N0 = −0.9 dB, when using a 
triangular Doppler profile (see 5.2) with Doppler shift fD = 1 MHz and increasing Doppler 
rate fR. For comparison, the figure also shows the maximum residual frequency error by the 
phase synchronizer that has been formulated as 92.6 kHz. From the figure, it can be seen that 
Doppler rates even up to 7 MHz/s are well inside the theoretical limit, whereas only Doppler 
rate values as high as 12 MHz/s could cause a loss of synchronization. This has been 
confirmed by means of CER curves, as shown in figures A-5 and A-6 for ACM formats 1 and 
27, respectively. 

 

Figure A-4: Frequency Error Convergence for First-Type FLL (k1 = 0.2), at 
Es/N0 = −0.9 dB, and Triangular Doppler Profile with fD = 1 MHz and 
Increasing Doppler Rate fR 
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Figure A-5: CER for ACM Format 1, Triangular Doppler Profile with fD = 1 MHz 
and Increasing Doppler Rate fR, First-Type FLL (k1 = 0.2) 

 

Figure A-6: CER for ACM Format 27, Triangular Doppler Profile with fD = 1 MHz 
and Increasing Doppler Rate fR, First-Type FLL (k1 = 0.2) 
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The simulation has also been repeated with the sinusoidal Doppler profile (see 5.2) with 
Doppler shift fD = 1 MHz and increasing Doppler rate fR, and results are shown in figures 
A-7, A-8, and A-9. It can be seen that similar a conclusion holds. 

 

Figure A-7: Frequency Error Convergence for First-Type FLL (k1 = 0.2), at 
Es/N0 = −0.9 dB, and Sinusoidal Doppler Profile with fD = 1 MHz and 
Increasing Doppler Rate fR 

 

Figure A-8: CER for ACM Format 1, Sinusoidal Doppler Profile with fD = 1 MHz and 
Increasing Doppler Rate fR, First-Type FLL (k1 = 0.2) 
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Figure A-9: CER for ACM Format 27, Sinusoidal Doppler Profile with fD = 1 MHz 
and Increasing Doppler Rate fR, First-Type FLL (k1 = 0.2) 

As a final cross-check (reported for reader’s reference), simulation by using a second-type FLL 
has also been carried out. Figure A-10 shows the measured residual frequency error as a 
function of the time (reported as PL frame number) at Es/N0 = −0.9 dB when using a sinusoidal 
Doppler profile, while figures A-11 and A-12 show the corresponding CER curves. It can be 
seen that the use of a second-type FLL, as expected, decreases the residual frequency error due 
to the Doppler rate improving resilience, although this improvement is not required for the 
considered scenarios. 

In conclusion, it has been found analytically and by simulations that for the considered 
scenarios, a first-type FLL is more than sufficient, even in the presence of a Doppler rate of 50 
kHz/s. This is possible thanks to the adopted phase synchronizer that is able to correct residual 
frequency errors well above the maximum residual error estimated for the adopted FLL. 
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Figure A-10: Frequency Error Convergence for Second-Type FLL (k1 = 0.32, 
k2 = 0.16), at Es/N0 = −0.9 dB, and Sinusoidal Doppler Profile with 
fD = 1 MHz and Increasing Doppler Rate fR 

 

Figure A-11: CER for ACM Format 1, Sinusoidal Doppler Profile with fD = 1 MHz 
and Increasing Doppler Rate fR, Second-Type FLL (k1 = 0.32, k2 = 0.16) 
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Figure A-12: CER for ACM Format 27, Sinusoidal Doppler Profile with fD = 1 MHz 
and Increasing Doppler Rate fR, Second-Type FLL (k1 = 0.32, k2 = 0.16) 
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ANNEX B 
 

ABBREVIATIONS AND ACRONYMS 

Term Meaning 

ACM adaptive coding and modulation 

AOS Advanced Orbiting Systems (space data link protocol) 

APSK amplitude phase shift keying 

ASM attached synchronization marker 

AWGN additive white Gaussian noise 

BER bit error rate 

BPSK binary phase shift keying 

CER codeword error rate 

DAGC digital automatic gain control 

DVB-S2 Digital Video Broadcasting—Second Generation 

EESS Earth Exploration Satellite Service 

EM Engineering Model 

FD frame descriptor 

FER frame error rate 

FFT fast Fourier transform 

FLL frequency locked loop 

FM frame marker 

IBO input back-off 

IF intermediate frequency 

LLR log-likelihood ratio 

ML maximum likelihood 
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ModCod modulation and coding 

OBO output back-off 

PL Physical Layer 

PLL phase-locked loop 

PSK phase shift keying 

QPSK quadrature phase shift keying 

RF radio frequency 

SCCC serial concatenated convolutional code 

SMTF synch-marked transfer frame 

SNR signal-to-noise ratio 

SRRC square root raised cosine 

TD total degradation 

TWTA traveling wave tube amplifier 
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