
Research and Development for
Space Data System Standards

CAST FLIGHT SOFTWARE
AS A CCSDS ONBOARD

REFERENCE
ARCHITECTURE

EXPERIMENTAL SPECIFICATION

CCSDS 811.1-O-1

ORANGE BOOK
November 2021

Research and Development for
Space Data System Standards

CAST FLIGHT SOFTWARE
AS A CCSDS ONBOARD

REFERENCE
ARCHITECTURE

EXPERIMENTAL SPECIFICATION

CCSDS 811.1-O-1

ORANGE BOOK
November 2021

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page i November 2021

AUTHORITY

 Issue: Orange Book, Issue 1

 Date: November 2021

 Location: Washington, DC, USA

This document has been approved for publication by the Consultative Committee for Space
Data Systems (CCSDS). The procedure for review and authorization of CCSDS documents
is detailed in Organization and Processes for the Consultative Committee for Space Data
Systems (CCSDS A02.1-Y-4).

This document is published and maintained by:

CCSDS Secretariat
National Aeronautics and Space Administration
Washington, DC, USA
Email: secretariat@mailman.ccsds.org

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page ii November 2021

FOREWORD

This document is a CCSDS Experimental Specification for designing a flight software
architecture using CCSDS Recommended Standards from different domains. It was
contributed to CCSDS by China Academy of Space Technology (CAST) and Tsinghua
University.

Attention is drawn to the possibility that some of the elements of this document may be the
subject of patent rights. CCSDS has processes for identifying patent issues and for securing
from the patent holder agreement that all licensing policies are reasonable and non-
discriminatory. However, CCSDS does not have a patent law staff, and CCSDS shall not be
held responsible for identifying any or all such patent rights.

Through the process of normal evolution, it is expected that expansion, deletion, or
modification of this document may occur. This Recommended Standard is therefore subject
to CCSDS document management and change control procedures, which are defined in the
Organization and Processes for the Consultative Committee for Space Data Systems
(CCSDS A02.1-Y-4). Current versions of CCSDS documents are maintained at the CCSDS
Web site:

http://www.ccsds.org/

Questions relating to the contents or status of this document should be sent to the CCSDS
Secretariat at the email address indicated on page i.

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page iii November 2021

At time of publication, the active Member and Observer Agencies of the CCSDS were:

Member Agencies
– Agenzia Spaziale Italiana (ASI)/Italy.
– Canadian Space Agency (CSA)/Canada.
– Centre National d’Etudes Spatiales (CNES)/France.
– China National Space Administration (CNSA)/People’s Republic of China.
– Deutsches Zentrum für Luft- und Raumfahrt (DLR)/Germany.
– European Space Agency (ESA)/Europe.
– Federal Space Agency (FSA)/Russian Federation.
– Instituto Nacional de Pesquisas Espaciais (INPE)/Brazil.
– Japan Aerospace Exploration Agency (JAXA)/Japan.
– National Aeronautics and Space Administration (NASA)/USA.
– UK Space Agency/United Kingdom.

Observer Agencies
– Austrian Space Agency (ASA)/Austria.
– Belgian Science Policy Office (BELSPO)/Belgium.
– Central Research Institute of Machine Building (TsNIIMash)/Russian Federation.
– China Satellite Launch and Tracking Control General, Beijing Institute of Tracking and

Telecommunications Technology (CLTC/BITTT)/China.
– Chinese Academy of Sciences (CAS)/China.
– China Academy of Space Technology (CAST)/China.
– Commonwealth Scientific and Industrial Research Organization (CSIRO)/Australia.
– Danish National Space Center (DNSC)/Denmark.
– Departamento de Ciência e Tecnologia Aeroespacial (DCTA)/Brazil.
– Electronics and Telecommunications Research Institute (ETRI)/Korea.
– European Organization for the Exploitation of Meteorological Satellites (EUMETSAT)/Europe.
– European Telecommunications Satellite Organization (EUTELSAT)/Europe.
– Geo-Informatics and Space Technology Development Agency (GISTDA)/Thailand.
– Hellenic National Space Committee (HNSC)/Greece.
– Hellenic Space Agency (HSA)/Greece.
– Indian Space Research Organization (ISRO)/India.
– Institute of Space Research (IKI)/Russian Federation.
– Korea Aerospace Research Institute (KARI)/Korea.
– Ministry of Communications (MOC)/Israel.
– Mohammed Bin Rashid Space Centre (MBRSC)/United Arab Emirates.
– National Institute of Information and Communications Technology (NICT)/Japan.
– National Oceanic and Atmospheric Administration (NOAA)/USA.
– National Space Agency of the Republic of Kazakhstan (NSARK)/Kazakhstan.
– National Space Organization (NSPO)/Chinese Taipei.
– Naval Center for Space Technology (NCST)/USA.
– Netherlands Space Office (NSO)/The Netherlands.
– Research Institute for Particle & Nuclear Physics (KFKI)/Hungary.
– Scientific and Technological Research Council of Turkey (TUBITAK)/Turkey.
– South African National Space Agency (SANSA)/Republic of South Africa.
– Space and Upper Atmosphere Research Commission (SUPARCO)/Pakistan.
– Swedish Space Corporation (SSC)/Sweden.
– Swiss Space Office (SSO)/Switzerland.
– United States Geological Survey (USGS)/USA.

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page iv November 2021

PREFACE

This document is a CCSDS Experimental Specification. Its Experimental status indicates
that it is part of a research or development effort based on prospective requirements, and as
such it is not considered a Standards Track document. Experimental Specifications are
intended to demonstrate technical feasibility in anticipation of a ‘hard’ requirement that has
not yet emerged. Experimental work may be rapidly transferred onto the Standards Track
should a hard requirement emerge in the future.

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page v November 2021

DOCUMENT CONTROL

Document Title Date Status

CCSDS
811.1-O-1

CAST Flight Software as a CCSDS
Onboard Reference Architecture,
Experimental Specification, Issue 1

November
2021

Original issue

EC 1 Editorial Change 1 December
2021

Restores missing row
numbers in table 3-1

December 2021

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page vi November 2021

CONTENTS

Section Page

1 INTRODUCTION .. 1-1

1.1 PURPOSE ... 1-1
1.2 SCOPE .. 1-1
1.3 DEFINITIONS AND CONVENTIONS... 1-3
1.4 DOCUMENT STRUCTURE ... 1-5
1.5 REFERENCES ... 1-5

2 OVERVIEW OF CAST FLIGHT SOFTWARE ARCHITECTURE 2-1

2.1 BACKGROUND .. 2-1
2.2 SOFTWARE ARCHITECTURE .. 2-2
2.3 INTERFACES .. 2-5

3 INFUSION OF SERVICES AND PROTOCOLS STANDARDS

INTO CAST SOFTWARE ARCHITECTURE .. 3-1

3.1 GENERAL .. 3-1
3.2 SERVICE AND PROTOCOL ARCHITECTURE ... 3-1
3.3 RELATIONSHIP BETWEEN SOIS AND OTHER STANDARDS 3-9

4 RELATIONSHIP BETWEEN SOIS SERVICES ... 4-1

4.1 GENERAL .. 4-1
4.2 NAMING MECHANISM ... 4-1
4.3 MAJOR SERVICES RELATIONSHIP AND ADDRESSING MECHANISM 4-3

5 RELATIONSHIP BETWEEN SOIS SERVICES AND DEVICE HARDWARE ... 5-1

5.1 GENERAL .. 5-1
5.2 DEVICE TYPES ANALYSIS IN CAST AVIONICS SYSTEM 5-1
5.3 HARDWARE NODES ACCESS METHODS IN AVIONICS SYSTEM 5-3

6 APPLICATION OF SEDS .. 6-1

6.1 GENERAL .. 6-1
6.2 AN APPLICATION EXAMPLE .. 6-1

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page vii November 2021

CONTENTS (continued)

Section Page

7 BENEFITS OF USING STANDARDIZED PROTOCOLS AND
SERVICES IN CAST SOFTWARE ... 7-1

7.1 BRIEF INTRODUCTION OF IMPLEMENTATION

AND EXPERIMENTATION ... 7-1
7.2 SYSTEM FUNCTION ENHANCEMENT .. 7-4
7.3 THE CHANGE OF SOFTWARE DEVELOPMENT MODEL 7-6
7.4 CONCLUSION ... 7-8

ANNEX A PROCESS AND METHOD EXAMPLES FOR IMPLEMENTING

CCSDS STANDARD PRIMITIVES (INFORMATIVE) A-1
ANNEX B ABBREVIATIONS AND ACRONYMS (INFORMATIVE)B-1
ANNEX C DESCRIPTION OF THE PARAMETERS

BY SEDS (INFORMATIVE) .. C-1
ANNEX D DESCRIPTION OF THE INTERFACES

BY SEDS (INFORMATIVE) .. D-1

Figure

1-1 Bit Numbering Convention ... 1-5
2-1 CAST Flight Software Architecture ... 2-3
3-1 CAST Flight Software Service and Protocol Architecture ... 3-7
3-2 Relationship between Service and Protocol Architecture and

Software Architecture ... 3-9
3-3 Example of Protocol Configuration .. 3-17
4-1 The Hierarchy of Naming ... 4-2
5-1 Hardware Platform Composition Diagram of Avionics System 5-2
5-2 Protocol Configuration of Intelligent Nodes through 1553B 5-3
5-3 Protocol Configuration of Intelligent Nodes through TTE ... 5-5
5-4 Protocol Configuration of Accessing Simple Intelligent Nodes 5-6
5-5 Protocol Configuration of Accessing Non-Intelligent Nodes 5-7
6-1 Sending a ML Command .. 6-2
7-1 Avionics System Hardware Platform and Test System 1 ... 7-2
7-2 Avionics System Hardware Platform and Test System 2 ... 7-3
A-1 Implementation Process of PACKET.request Primitive.. A-2

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page viii November 2021

CONTENTS (continued)

Table Page

3-1 Common Functions Mapping to Services and Protocols .. 3-5
3-2 Settings of Para_id .. 3-11
3-3 Settings of Register Address ... 3-13
3-4 Example of Register Load Command Channel Identifier .. 3-14
3-5 Virtual Device Table ... 3-14
3-6 Virtual Value Resolution Table of the Register Load Command

Virtual Devices ... 3-14
3-7 Virtual Value Resolution Table of the Register Load Command

Virtual Devices ... 3-15
6-1 Device Access Type Table ... 6-3
6-2 Device and Value Identifier Resolution Table ... 6-3
6-3 Routing Table ... 6-3
6-4 ML Link Configuration Information .. 6-3

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page 1-1 November 2021

1 INTRODUCTION

1.1 PURPOSE

The purpose of this Experimental Specification is to design and implement a Flexible and
Unified Flight Software Architecture (FUHSI) of China Academy of Space Technology
(CAST) to provide standardized basic service support for future spacecraft avionics systems.
At the same time, it is an onboard reference architecture of Consultative Committee for
Space Data Systems (CCSDS), providing the implementation and application of CCSDS
Spacecraft Onboard Interface Services (SOIS) (reference [1]) and other standards in the
spacecraft.

The software architecture is a comprehensive application of the standards of CCSDS SOIS,
Space Link Services (SLS), Space Internetworking Services (SIS), the communication
standards of European Cooperation for Space Standardization (ECSS), as well as some
protocols of Internet Engineering Task Force (IETF). In the design process, it solves the
problem of interfaces between other standards and SOIS, interfaces between the SOIS
services, as well as interfaces between SOIS and the underlying devices. The design method
and the application effect of the avionics system software architecture based on these
standards are validated. CAST FUHSI has fulfilled the standardization, modularization, and
reusability of the flight software while enhancing the function of the onboard avionics
system. It can be used as the basic platform of the spacecraft software to improve the
efficiency and reliability of the system and the software.

1.2 SCOPE

This Experimental Specification describes CAST FUHSI, including the following contents:

a) How to integrate the standards of CCSDS SOIS, SLS, and SIS, along with ECSS, and
IETF in the flight software architecture; and how to set up the interface between
SOIS services and other standards;

b) How to establish the functional connection among SOIS services in the flight
software architecture;

c) How to connect the standard SOIS services to the specific devices in the flight
software architecture;

d) How to apply SEDS in the flight software architecture;

e) The benefits of applying standards in the flight software architecture.

The CCSDS services and protocols involved in flight software architecture are listed as
follows:

a) SOIS Subnetwork Packet Service (reference [2]);

b) SOIS Subnetwork Memory Access Service (reference [3]);

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page 1-2 November 2021

c) SOIS Subnetwork Synchronisation Service (reference [4]);

d) SOIS Message Transfer Service (reference [5]);

e) SOIS Device Access Service (reference [6]);

f) SOIS Device Virtualization Service (reference [7]);

g) SOIS Device Data Pooling Service (reference [8]);

h) SOIS Time Access Service (reference [9]);

i) TC Space Data Link Protocol (reference [10]);

j) AOS Space Data Link Protocol (reference [11]);

k) Space Packet Protocol (reference [12]);

l) Communications Operation Procedure-1 (reference [31]);

m) Encapsulation Protocol (reference [36]);

n) Asynchronous Message Services (reference [13]);

o) IP over CCSDS Space Links (reference [35]).

Among the services and protocols mentioned above, a)–h) are from SOIS, i)–m) are from
SLS, n)–o) are from SIS. This Experimental Specification does not discuss the following
CCSDS SOIS services:

a) SOIS File & Packet Store Service;

b) SOIS Device Enumeration Service;

c) SOIS Device Discovery Service;

d) SOIS Test Service.

Some ECSS standards are also used in the architecture:

a) Packet Utilization Standard (reference [14]);

b) 1553B Bus Standard (reference [15]).

And some protocols of IETF are also used in the architecture：

a) Internet Protocol (reference [18]);

b) Transmission Control Protocol (reference [19]);

c) User Datagram Protocol (UDP) (reference [20]).

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page 1-3 November 2021

1.3 DEFINITIONS AND CONVENTIONS

1.3.1 DEFINITIONS

1.3.1.1 Definitions from the Open Systems Interconnection Basic Reference Model

This Experimental Specification makes use of the following terms. The use of those terms in
this Experimental Specification is to be understood in a generic sense, that is, in the sense
that those terms are generally applicable to any of a variety of technologies that provide for
the exchange of information between real systems. Those terms are:

a) entity;

b) service;

c) Service Access Point (SAP);

d) Service Data Unit (SDU);

e) Protocol Data Unit (PDU);

f) service user;

g) service provider;

h) application entity;

i) Application Layer.

1.3.1.2 Definitions from SOIS Recommendations

This Experimental Specification makes use of the following terms defined in SOIS
recommendations (reference [1-10]). The use of those terms in this Experimental
Specification is to be understood in a generic sense, that is, in the sense that those terms are
generally applicable to any of a variety of technologies that provide for the exchange of
information between real systems. Those terms are:

a) best effort;

b) data link;

c) data system;

d) data system address;

e) device;

f) Device Abstraction Control Procedure (DACP);

g) Device-specific Access Protocol (DAP);

h) Electronic Data Sheet (EDS);

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page 1-4 November 2021

i) functional interface;

j) heterogeneous network;

k) packet;

l) protocol ID;

m) Quality of Service (QoS);

n) reliability;

o) service class;

p) subnetwork;

q) user;

r) virtual device.

1.3.1.3 Terms Defined in This Experimental Specification

For the purposes of this document, the following definitions apply.

software component: An independent atomic software unit, configurable with the separation
of the external environment, into which the functional interface, the program code, data, and
internal variables, etc., are packaged.

transfer layer: A standard interface of data transmission for the upper-layer services and
users, comprising the Open Systems Interconnection (OSI) Transport and Network Layers.

subnetwork layer: A unified interface that shields the difference of various underlying data
links, below the transfer layer.

1.3.2 CONVENTIONS

In this document, the following convention is used to identify each bit in an N-bit field. The
first bit in the field to be transmitted (i.e., the most left position in figure 1-1) is defined to be
‘Bit 0’; the following bit is defined to be ‘Bit 1’, and so on up to ‘Bit N-1’. When the field is
used to express a binary value (such as a counter), the Most Significant Bit (MSB) is the first
transmitted bit of the field, that is, ‘Bit 0’.

In accordance with standard data-communications practice, data fields are often grouped into
8-bit ‘words’ that conform to the above convention. Throughout this Specification, such an
8-bit word is called an ‘octet’.

The numbering for octets within a data structure starts with ‘0’.

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page 1-5 November 2021

Figure 1-1: Bit Numbering Convention

1.4 DOCUMENT STRUCTURE

This document is structured as follows:

– Section 2 contains a description of CAST FUHSI and an overview of the background,
software architecture, and interfaces.

– Section 3 contains the specification of the selection and integration of CCSDS and
ECSS standards.

– Section 4 contains the relationship between SOIS services in the architecture.

– Section 5 contains the specification of the interfaces between SOIS services and
devices in the architecture.

– Section 6 contains the application of SEDS in the architecture.

– Section 7 contains benefits of using standards in the architecture.

– Annex A contains a realization method and process example for the primitive in a
CCSDS standard.

– Annex B contains the list of acronyms.

– Annex C contains description of the parameters by SEDS.

– Annex D contains description of the interfaces by SEDS.

1.5 REFERENCES

The following publications contain provisions which, through reference in this text,
constitute provisions of this Experimental Specification. At the time of publication, the
editions indicated were valid. All publications are subject to revision, and users of this
Experimental Specification are encouraged to investigate the possibility of applying the most
recent editions of the documents indicated below. The CCSDS Secretariat maintains a
register of currently valid CCSDS publications.

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page 1-6 November 2021

[1] Spacecraft Onboard Interface Services. Issue 2. Report Concerning Space Data System
Standards (Green Book), CCSDS 850.0-G-2. Washington, D.C.: CCSDS, December
2013.

[2] Spacecraft Onboard Interface Services—Subnetwork Packet Service. Issue 1.
Recommendation for Space Data System Practices (Magenta Book), CCSDS 851.0-M-1.
Washington, D.C.: CCSDS, December 2009.

[3] Spacecraft Onboard Interface Services—Subnetwork Memory Access Service. Issue 1.
Recommendation for Space Data System Practices (Magenta Book), CCSDS 852.0-M-1.
Washington, D.C.: CCSDS, December 2009.

[4] Spacecraft Onboard Interface Services—Subnetwork Synchronisation Service. Issue 1.
Recommendation for Space Data System Practices (Magenta Book), CCSDS 853.0-M-1.
Washington, D.C.: CCSDS, December 2009.

[5] Spacecraft Onboard Interface Services—Message Transfer Service. Issue 1-S.
Recommendation for Space Data System Practices (Historical), CCSDS 875.0-M-1-S.
Washington, D.C.: CCSDS, (November 2012) October 2016.

[6] Spacecraft Onboard Interface Services—Device Access Service. Issue 1-S.
Recommendation for Space Data System Practices (Historical), CCSDS 871.0-M-1-S.
Washington, D.C.: CCSDS, (March 2013) October 2016.

[7] Spacecraft Onboard Interface Services—Device Virtualization Service. Issue 1-S.
Recommendation for Space Data System Practices (Historical), CCSDS 871.2-M-1-S.
Washington, D.C.: CCSDS, (March 2014) October 2016.

[8] Spacecraft Onboard Interface Services—Device Data Pooling Service. Issue 1-S.
Recommendation for Space Data System Practices (Historical), CCSDS 871.1-M-1-S.
Washington, D.C.: CCSDS, (November 2012) October 2016.

[9] Spacecraft Onboard Interface Services—Time Access Service. Issue 1-S.
Recommendation for Space Data System Practices (Historical), CCSDS 872.0-M-1-S.
Washington, D.C.: CCSDS, (January 2011) October 2016.

[10] TC Space Data Link Protocol. Issue 4. Recommendation for Space Data System
Standards (Blue Book), CCSDS 232.0-B-4. Washington, D.C.: CCSDS, October 2021.

[11] AOS Space Data Link Protocol. Issue 4. Recommendation for Space Data System
Standards (Blue Book), CCSDS 732.0-B-4. Washington, D.C.: CCSDS, October 2021.

[12] Space Packet Protocol. Issue 2. Recommendation for Space Data System Standards
(Blue Book), CCSDS 133.0-B-2. Washington, D.C.: CCSDS, June 2020.

[13] Asynchronous Message Service. Issue 1. Recommendation for Space Data System
Standards (Blue Book), CCSDS 735.1-B-1. Washington, D.C.: CCSDS, September
2011.

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page 1-7 November 2021

[14] Space Engineering—Ground Systems and Operations—Telemetry and Telecommand
Packet Utilization. ECSS-E-70-41A. Noordwijk, The Netherlands: ECSS Secretariat,
January 2003.

[15] Space Engineering—Interface and Communication Protocol for MIL-STD-1553B Data
Bus Onboard Spacecraft. ECSS-E-ST-50-13C. Noordwijk, The Netherlands: ECSS
Secretariat, 15 November 2008.

[16] TM Synchronization and Channel Coding. Issue 3. Recommendation for Space Data
System Standards (Blue Book), CCSDS 131.0-B-3. Washington, D.C.: CCSDS,
September 2017.

[17] TC Synchronization and Channel Coding. Issue 4. Recommendation for Space Data
System Standards (Blue Book), CCSDS 231.0-B-4. Washington, D.C.: CCSDS, July
2021.

[18] S. Deering and R. Hinden. Internet Protocol, Version 6 (IPv6) Specification. RFC
2460. Reston, Virginia: ISOC, December 1998.

[19] J. Postel. Transmission Control Protocol. STD 7. Reston, Virginia: ISOC, September
1981.

[20] J. Postel. User Datagram Protocol. STD 6. Reston, Virginia: ISOC, August 1980.

[21] TM Space Data Link Protocol. Issue 3. Recommendation for Space Data System
Standards (Blue Book), CCSDS 132.0-B-3. Washington, D.C.: CCSDS, October 2021.

[22] Space Communications Protocol Specification (SCPS)—Transport Protocol (SCPS-
TP). Issue 2. Recommendation for Space Data System Standards (Blue Book), CCSDS
714.0-B-2. Washington, D.C.: CCSDS, October 2006.

[23] CCSDS File Delivery Protocol (CFDP). Issue 5. Recommendation for Space Data
System Standards (Blue Book), CCSDS 727.0-B-5. Washington, D.C.: CCSDS, July
2020.

[24] Proximity-1 Space Link Protocol—Data Link Layer. Issue 6. Recommendation for
Space Data System Standards (Blue Book), CCSDS 211.0-B-6. Washington, D.C.:
CCSDS, July 2020.

[25] Proximity-1 Space Link Protocol—Coding and Synchronization Sublayer. Issue 3.
Recommendation for Space Data System Standards (Blue Book), CCSDS 211.2-B-3.
Washington, D.C.: CCSDS, October 2019.

[26] Proximity-1 Space Link Protocol—Physical Layer. Issue 4. Recommendation for Space
Data System Standards (Blue Book), CCSDS 211.1-B-4. Washington, D.C.: CCSDS,
December 2013.

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page 1-8 November 2021

[27] Lossless Data Compression. Issue 3. Recommendation for Space Data System
Standards (Blue Book), CCSDS 121.0-B-3. Washington, D.C.: CCSDS, August 2020.

[28] Image Data Compression. Issue 2. Recommendation for Space Data System Standards
(Blue Book), CCSDS 122.0-B-2. Washington, D.C.: CCSDS, September 2017.

[29] Licklider Transmission Protocol (LTP) for CCSDS. Issue 1. Recommendation for
Space Data System Standards (Blue Book), CCSDS 734.1-B-1. Washington, D.C.:
CCSDS, May 2015.

[30] CCSDS Bundle Protocol Specification. Issue 1. Recommendation for Space Data
System Standards (Blue Book), CCSDS 734.2-B-1. Washington, D.C.: CCSDS,
September 2015.

[31] Communications Operation Procedure-1. Issue 2. Recommendation for Space Data
System Standards (Blue Book), CCSDS 232.1-B-2. Washington, D.C.: CCSDS,
September 2010.

[32] “Spacecraft Onboard Interface Services Electronic Data Sheets and Dictionary of
Terms.” Space Assigned Numbers Authority. https://sanaregistry.org/r/sois.

[33] Electronic Data Sheets and Dictionary of Terms for Onboard Devices and
Components. Report Concerning Space Data System Standards (Green Book).
Forthcoming.

[34] Spacecraft Onboard Interface Services—XML Specification for Electronic Data Sheets.
Issue 1. Recommendation for Space Data System Standards (Blue Book), CCSDS
876.0-B-1. Washington, D.C.: CCSDS, April 2019.

[35] IP over CCSDS Space Links. Issue 1. Recommendation for Space Data System
Standards (Blue Book), CCSDS 702.1-B-1. Washington, D.C.: CCSDS, September
2012.

[36] Encapsulation Packet Protocol. Issue 3. Recommendation for Space Data System
Standards (Blue Book), CCSDS 133.1-B-3. Washington, D.C.: CCSDS, May 2020.

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page 2-1 November 2021

2 OVERVIEW OF CAST FLIGHT SOFTWARE ARCHITECTURE

2.1 BACKGROUND

With the development of space technology, new requirements have been put forward for the
convenience and ease of operation of spacecraft. Spacecraft avionics systems are responsible
for implementing those requirements, whose autonomy and ability of internetworking need
to be enhanced. The efficiency and reliability of spacecraft avionics systems also need to be
improved.

a) The autonomy of spacecraft should be enhanced gradually. Functions such as
autonomous mission planning, self-diagnostics, and autonomous housekeeping need
to be implemented by avionics systems. Additionally, the computing ability needs to
be extended as required.

b) The ability of internetworking needs to be provided. The space network and onboard
network should be designed in a uniform way, which will support standard protocols
and isolate the influence of changes on data link and protocols to upper layers.
Flexible information transfer mechanisms will be implemented to allow the
cooperation of multiple spacecraft or devices inside a spacecraft. Thereby the user
can focus on the implementation of algorithms to support increased autonomy.

c) The spacecraft-ground operation interfaces and onboard interfaces should be
standardized, which will not only provide convenient and powerful interfaces in a
standard way to the ground users, but also support the changes on onboard interfaces
without affecting the upper layer applications.

The spacecraft avionic system should provide supportive services to the traditional spacecraft
functions, which include telecommand management, telemetry management, housekeeping
management, thermal control management, power management, etc. The development
process of application software can be simplified by the integration of common services.
Based on the requirements above, multiple domain requirements of spacecraft avionics
systems have been analyzed by CAST, services and protocols of CCSDS and ECSS have
been selected and integrated (as specified in section 3), and avionics system flight software
architecture has been designed. The purposes are:

a) providing a standard software platform to support the intelligent applications for
future spacecraft, the space internetworking, and onboard networking;

b) accelerating the reuse of onboard software, onboard devices, and ground test
software, and in the meantime, enhancing the system functions and reducing the
repetition of development;

c) transforming the development method from manual programming to assembly of
software via tools based on software architecture and software components, which
will improve software efficiency and system reliability.

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page 2-2 November 2021

2.2 SOFTWARE ARCHITECTURE

2.2.1 OVERVIEW

The principles of CAST FUHSI design are as follows:

a) Layering: A complex problem is simplified by decomposing it into several layers.
CAST FUHSI is a layered architecture in which services and interfaces of each layer
are standardized. On one hand, the layered architecture shields the influence of the
change on the hardware interfaces and protocols from the upper layers and supports
the upgrade of technology, which makes FUHSI very flexible. On the other hand, the
common functions can be provided through standard services, which can increase the
reusability of software.

b) Standardization of operating system interfaces and unified framework of device
drivers: In order to support the change of operating systems, CAST FUHSI
standardizes the operating system interfaces. The framework of device drivers is
defined in order to support different types of device interfaces and provide the
extension ability to satisfy the requirements of controlling various devices.

c) Unified information transfer mechanism: A unified information transfer
mechanism is established based on CCSDS standards, ECSS standards, and IETF
standards, which support the integrated communications and standardized design over
ground-to-spacecraft, onboard, and spacecraft-to-spacecraft links. The changes and
upgrades of protocols, as well as the flexible information transmission among upper
layer applications, are also supported.

d) Standardized components and their interfaces: The standardized components and
their interfaces are defined in the software architecture to provide the standard
services with software components. The development of new mission software can be
assembled by standard components and mission-specific components, which can
promote the development process and shorten the software development cycle.
Various requirements of different projects must be considered during the design of
service components. The common requirements of projects shall be abstracted, and
the variability shall be identified and isolated by parameters, so as to increase the
flexibility and reusability of the components.

Based on the above principles, CAST FUHSI consists of an operating system layer,
middleware layer, and Application Management Layer, as depicted in figure 2-1. Application
Management Layer and Application Support Layer of the middleware layer constitute the
Application Layer. The software architecture is established on the basis of hardware. The
hardware includes various components for onboard computers, which are the operation base
of the flight software. The hardware components include Central Processor Unit (CPU),
Read-Only Memory (ROM), Random-Access Memory (RAM), clocks, watchdog, 1553B
interface, backplane bus interface, Universal Asynchronous Receiver/Transmitter (UART)
interface, Analogue (AN) interface, Memory Load (ML) interface, On/off command
interface, Digital Serial (DS) interface, Time Trigged Ethernet (TTE) interface, extension
interface, and so on.

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page 2-3 November 2021

The operating system layer is the supporting platform that shields the differences on
hardware and operating systems through the framework of device drivers and operating
system interfaces. The middleware layer, which is the core of the software architecture,
contains software components to implement services and protocols from CCSDS and ECSS.
The onboard communications are standardized by SOIS service components; the spacecraft-
to-ground and spacecraft-to-spacecraft Data Link Layer protocols are standardized by
Telecommand (TC) space data link protocol and Advanced Orbiting System (AOS) space
data link protocol. Combined with Space Packet Protocol (SPP) and UDP/IP of transfer layer
and Asynchronous Message Service (AMS) of the Application Support Layer, the integrated
communications over spacecraft-to-ground, onboard spacecraft and spacecraft-to-spacecraft
links can be implemented. With the support of the operating system layer and middleware
layer, most of the functions can be implemented by the combination of common service
components. Based on the architecture, users only need to select and configure the
components from each layer, then develop the mission specific software and assemble the
software with the components, achieving the goal of software fast-development.

Hardware

CPU Clock

UART

Watchdog

Backplane
Bus

ROM RAM

Operating
System
Layer

Real-time
Kernel BSP Device

Drivers

MTS
Component

DDPS
Component

TAS
Component

Space Packet
Component

Onboard Subnet Components

PUS Service Components

Basic
Function
Library

System
Configu
-ration
Manage
-ment

Application
Management

Layer

Thermal
Control

Management
Application

Power
Management
Application

Time
Management
Application

Housekeeping
Management
Application

Application
Support
Layer

Transfer
Layer

Subnetwork
Layer

Middleware
Layer

Space Subnet Components

Telemetry
Management
Application

Telecommand
Management
Application

Operating System API

Middleware API

DAS
Component

DVS
Component

1553B

AN DS ML On/off
Command

Unlock And
Rotation Gear

Control
Application

TTE

UDP Component

IPv6 Component

Encapsulation
Service

Component

IP Over
CCSDS

Component

Figure 2-1: CAST Flight Software Architecture

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page 2-4 November 2021

2.2.2 OPERATING SYSTEM LAYER

The interface of Operating System is encapsulated, and a unified Application Program
Interface (API) is provided by the Operating System Layer. Any operating system that is
supported by this unified API can be used in the avionics system, which will allow the
operating system updates. The Operating System consists of a real-time kernel, Board
Support Package (BSP), device drivers, and basic function libraries. When a new hardware
interface is to be supported, new device drivers can be added.

2.2.3 MIDDLEWARE LAYER

Middleware is a common service platform between the Operating System Layer and
Application Management Layer, which has standard program interfaces and protocols.
Middleware can provide the data exchange and cross support among different hardware and
operating systems. In order to make the middleware extendable and support the upgrade of
technology, the middleware is divided into three layers, with each layer being configurable
through system configuration management. The layers are:

a) Subnetwork Layer. In this layer, a unified software interface is defined to shield the
difference on data links. Additionally, a set of service components are provided in
this layer to support the upper layer components, which include onboard subnet
components and space subnet components. The onboard subnet components contain
several components to implement the SOIS Packet Service, Memory Access Service,
Synchronization Service, and data link convergence functions. The space subnet
components consist of a TC component, an AOS component, and so on. This layer
can support the add-in and change of different data link convergence components
through configuration; thus the change of hardware interfaces and protocols would
not influence the upper layers.

b) Transfer Layer. This layer is a combination of OSI Transport Layer and Network
Layer, providing standard interfaces to the layers above for data transfer. Transport
layer includes a UDP component to implement UDP protocol. Network layer includes
an SPP component, IPv6 component, IP over CCSDS component, and Encapsulation
Protocol component. SPP and encapsulation protocols can be distinguished by the
packet version number, and they are compatible in Network Layer. The IP component
can work on top of the Encapsulation Protocol component.

c) Application Support Layer. This Layer provides the standard service components to
support the application, which include the SOIS Application Support Layer services
and Packet Utilization Standard (PUS) services. Currently, SOIS Message Transfer
Service (MTS) and AMS are implemented to support the message communications of
application process. Device Access Service (DAS), Device Virtualization Service
(DVS) and Device Data Pooling Service (DDPS) are provided by 3 corresponding
components to support the access of devices and parameters. Time Access Service
(TAS) is to support the access of onboard time. PUS service components are mainly
focused on the related services in the spacecraft avionics domain, which include

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page 2-5 November 2021

telecommand verification component, device command distribution component,
onboard operation scheduling component, memory management component, time
management component, housekeeping & diagnostic data reporting component,
onboard storage and retrieval component, onboard monitoring component, event
report component, event-action component and so on.

2.2.4 APPLICATION MANAGEMENT LAYER

Application Management Layer contains most of the common functions of avionics system,
which include telemetry management application, telecommand management application,
housekeeping management application, time management application, thermal control
management application, power management application, unlock and rotation gear control
application, and so on. With the support of basic services in the lower layer, the
implementation of Application Management Layer only needs to integrate the different basic
services according to specific logic.

The implementation of this layer may be different among different missions. With the
support of a multi-task operating system, any of several tasks or processes could use the
standard interface provided by the middleware layer to accomplish the specific functions of
the mission. The interface of MTS will be used for message communications among tasks or
processes.

2.3 INTERFACES

2.3.1 INTERFACE OF EACH LAYER

In the software architecture, each layer provides a standard interface for the upper layer. The
implementation of the protocols must conform to the requirements of the interface. The
interfaces are:

a) Operating System Layer interface: including task management interface, interrupt
management interface, memory management interface, semaphore management
interface, timer management interface, IO interface, user support library interface,
and so on.

b) Subnetwork Layer interface: including Packet Service interface, Memory Access
Service interface, Synchronization Service interface, TC interface, AOS interface,
and so on.

c) Transfer Layer interface: including SPP interface, UDP interface, IPv6 interface, IP
over CCSDS interface, Encapsulation Protocol interface and so on.

d) Application Support Layer interface: including PUS interface, MTS interface, DDPS
interface, DAS interface, DVS interface, TAS interface and so on.

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page 2-6 November 2021

2.3.2 INTERFACE OF SOFTWARE COMPONENT

The middleware of the software architecture is implemented by software components. The
interface of components adopted by CAST consists of component inner parameters and an
outside interface. The outside interface contains the following interface types:

a) The provided interface to the upper layers, including

1) Initialization Interface, which can be called by other components to accomplish
the initialization process,

2) Functional Interface, which can be called by other components to accomplish the
main function of the component,

3) Configuration Interface, which can be called by system configurator to
accomplish the configuration of the component;

b) The required interface from lower layers, which can be called by the component, and
which can be implemented through configuration.

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page 3-1 November 2021

3 INFUSION OF SERVICES AND PROTOCOLS STANDARDS INTO
CAST SOFTWARE ARCHITECTURE

3.1 GENERAL

Services and protocols of CCSDS and ECSS have been selected and integrated in CAST
FUHSI as specified in 2.1, with the purpose of providing standard services, protocols, and
related software components for future intelligent and internetworking applications to cover
the space networks as well as the onboard networks, which can fulfill the flexible exchange
of information and enhance the system functions.

Specifically, the standards integrated contain those from CCSDS SOIS domain, SLS domain,
and SIS domain, as well as PUS and 1553B standard from ECSS. The steps of integration
are:

a) analyzing the requirements of avionics systems serving for different types of CAST
spacecraft;

b) analyzing the adaptability and applicability of CCSDS standards, ECSS standards,
and IETF standards;

c) mapping the requirements to standard services and protocols to construct the avionics
system service and protocol architecture.

In order to help understanding the process of selection and integration of standards as well as
provide reference to the application and extension of standards, this section will focus on the
following contents:

a) services and protocols architecture, including requirements analysis, analysis and
selection of standard services and protocols, design of services, and protocols
architecture;

b) the relationship between SOIS and other standards, including the relationship
between SOIS and PUS, the relationship between SOIS and SLS protocol, and the
relationship between SOIS and SIS protocol.

3.2 SERVICE AND PROTOCOL ARCHITECTURE

3.2.1 REQUIREMENTS ANALYSIS

The architectures of CCSDS and ECSS standards are both very complex, within which
protocols need to be selected according to the requirements of applications. Therefore, CAST
analyzed the requirements of different types of spacecraft such as remote sensing, navigation,
telecommunication, crewed spaceship, deep space, and so on, and then determined the
common requirements for avionics systems that are considered as the input of service and
protocol architecture design.

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page 3-2 November 2021

The results of analysis show that common requirements of avionics system flight software
include seven top-level functions: telecommand management, telemetry management, time
management, housekeeping management, thermal control management, power management,
unlock and rotation gear control, etc.

a) Telecommand management is an important way to control the spacecraft, which
includes operation of telecommunication, real-time command distributing, time-
tagged command distributing, providing data input channels to other application
processes, etc.;

b) Telemetry management is an important way to acquire the spacecraft running state
data and results of telecommand, which includes telecommand verification, acquiring
device states, organizing telemetry data, data storage and retrieval, data scheduling
and download, etc.

c) Time management is used to manage the synchronization of onboard time of different
devices and ground system, which includes central time correction, average time
correction, time distribution, etc.

d) Housekeeping management is used to provide the health management of spacecraft,
which includes parameter monitoring, event report, event-action, memory
management, onboard maintenance, important data storage and retrieve, self-test,
system reconfiguration, etc.

e) Thermal control management includes open loop control, close loop control, failure
detection and handling, thermal parameters set, etc.

f) Power management includes electricity adjust, power distribution, coulometer
control, battery temperature excess protection, etc.

g) Unlock and rotation gear control includes explosive device control, antenna and solar
array driving control, etc.

In addition to the common requirements mentioned above, different spacecraft have some
specific requirements, such as autonomous task scheduling, autonomous navigation, routing
among spacecraft, emergency return, and environment control.

Ground-spacecraft interface protocol and onboard interface protocol will be needed for the
implementation of all these requirements mentioned above by avionics systems, in order to
communicate with ground systems and other devices. In the meantime, some common
services are needed by different functions. For example, the command sending service is
needed by functions such as telecommand management, housekeeping management, thermal
control management, and power management. Telemetry data acquiring service is also
needed by functions such as telemetry management, housekeeping management, thermal
control management, and power management. Time access service is needed by telemetry
and telecommand functions. Functions related to intelligence, such as autonomous mission
planning and self-determination, also need to acquire telemetry data and send commands.
Additionally, different functions need a message transfer service to achieve cooperation.

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page 3-3 November 2021

3.2.2 SELECTION AND ANALYSIS OF STANDARD SERVICE AND PROTOCOL

Fundamental functions such as telemetry data acquiring, command sending, message
transfer, and time access (mentioned in 3.2.1) could be implemented with CCSDS standard
services and protocols.

CCSDS domains related to these functions include SOIS, SLS, and SIS. Layered architecture
defined by SOIS can shield the upper layer from the influence of hardware changes and
provide a set of standard onboard services to support the upper layer applications. Standards
from SLS and SIS domains can provide spacecraft-to-ground and spacecraft-to-spacecraft
communication services. Those domains of CCSDS focus more on the services of lower
layer, but less on the direct support to top-level applications. PUS published by ECSS has
defined 16 services, which has standardized the interface between ground and spacecraft in
Application Layer. Additionally, the services can be combined to satisfy the top-level
application functions. Thus PUS can be a valuable supplement to CCSDS. Onboard bus
protocol such as 1553B interface protocol defined by ECSS could also be used together with
the Subnetwork Layer services defined by CCSDS SOIS domain.

Based on the consideration above, services from CCSDS SOIS, SLS, and SIS domain can be
integrated with ECSS PUS and 1553B, which will be the core of middleware in CAST
FUHSI. Services and protocols from each CCSDS domain can be selected based on the
following considerations.

a) CCSDS space communications protocols are developed by workgroups of SLS and SIS
domain. There are five layers in the CCSDS space communications protocols reference
model, including Physical Layer, Data Link Layer, Network Layer, Transport Layer,
and Application Layer. The selection of protocols for each layer is as follows.

1) CCSDS has a standard for Physical Layer called Radio Frequency and
Modulation Systems, which is mainly related to hardware implementation and
therefore not considered in CAST FUHSI.

2) CCSDS defines two sublayers in the Data Link Layer: Data Link Protocol
sublayer and Synchronization and Channel Coding sublayer. CCSDS has
developed five protocols for the Data Link Protocol sublayer: TM Space Data
Link Protocol (reference [21]), TC Space Data Link Protocol, AOS Space Data
Link Protocol, Proximity-1 Space Link Protocol—Data Link Layer, and Unified
Space Link Protocol (USLP). As services defined by AOS have covered all the
services defined by TM, and there are no spacecraft of CAST using TM Space
Data Link Protocol, AOS can be used to perform the telemetry downlink function.
TC Space Data Link Protocol can be used for uplink function. In case of image
and voice, uplink function is needed in a space station mission; AOS can also be
used as an uplink protocol. Proximity-1 (references [24], [25], and [26]) and
USLP are not implemented in the software architecture temporarily. Thus Data
Link Layer protocols from SLS domain selected by CAST flight software are TC
and AOS Space Data Link Protocol, together with TM Synchronization and

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page 3-4 November 2021

Channel Coding (reference [16]), TC Synchronization and Channel Coding
protocol (reference [17]), and COP-1 (reference [31]).

3) There are protocols such as TCP (reference [19]), UDP (reference [20]), SCPS-TP
(reference [22]), LTP (reference [29]) in the Transfer Layer and SPP,
Encapsulation Protocol (reference [36]), IP protocol (reference [18]), and IP over
CCSDS protocol (reference [35]) in the Network Layer. In CAST FUHSI, UDP
is used in Transport Layer. SPP, Encapsulation Protocol, IP protocol, and IP over
CCSDS protocol are used in the Network Layer. As these protocols are used, it is
easy to support the extension of the ground network to the space network.

4) Application Layer protocols include CFDP (reference [23]), lossless data
compression (reference [27]), image data compression (reference [28]), BP
(reference [30]), AMS, etc. Lossless data compression and image data
compression are mostly related to hardware, in addition, CFDP and BP are not
used in CAST spacecraft currently. Therefore they are not included in CAST
FUHSI. AMS could be used not only as a way to transfer message over space
communications links, but also over onboard communications links, which can
achieve the unified communications of space and onboard networks. Hence, AMS
is used in CAST FUHSI.

b) CCSDS onboard communications protocols are developed by workgroups of SOIS.
There are three layers in the SOIS reference architecture: the Subnetwork Layer, the
Transfer Layer, and the Application Support Layer. The selection of each layer is as
follows:

1) Subnetwork Layer contains Packet Service (PS), Memory Access Service (MAS),
Synchronisation Service (SYNC), Device Discovery Service (DDS), Test Service
(TS). PS is mainly used to transfer various packets over an onboard data link.
MAS is used to access the memory or register of inside a device. SYNC can be
used to provide the onboard time. Since these 3 services are fundamental services
of CAST FUHSI, they are all adopted. DDS and TS can be used for device plug-
and-play, which are not necessary currently. Therefore they are not adopted
temporarily.

2) Transfer Layer in SOIS reference model is optional, but it is absolutely necessary
in CAST FUHSI. The main concern is to syncretize the space communications
and onboard communications, as well as to provide the routing mechanism among
different data links, which can support remote device access, message transfer,
and remote memory access between terminals on different buses. UDP, SPP,
Encapsulation Protocol, IP protocol, and IP over CCSDS protocol are used in this
layer. As global IPv4 address resources have been basically exhausted, and IPv6
is to be used as the next generation internet protocol, so IPv6 is selected as the
network protocol both in onboard communication and space communication
scene.

3) Application Support Layer in SOIS reference model contains Command and Data
Acquisition Service (CDAS), TAS, MTS, File and Packet Store Service (FPSS),

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page 3-5 November 2021

and Device Enumeration Service (DES). CDAS consists of DAS, DVS, and
DDPS, which are used for the device data acquiring and command sending. TAS
is used to acquire the onboard time. MTS is used to communicate between
different applications inside the same devices or across different devices. FPSS is
used to manage files and packets. DES is used for plug-and-play. Because the first
three services are related to device access, time acquire, and message share,
which are the fundamental functions of CAST FUHSI, they are all adopted. As
file management and plug-and-play are not involved in CAST FUHSI currently,
they are not adopted.

c) As PUS protocol is the supplement of CCSDS protocol in the Application Layer, and
ECSS 1553B interface protocol is the supplement of CCSDS protocol in the Data
Link Layer, they are all adopted in CAST FUHSI.

3.2.3 SERVICE AND PROTOCOL ARCHITECTURE DESIGN

Through the analysis of requirements, standard services, and protocols, requirements can be
mapped to services and protocols. Namely, by analyzing the way to accomplish the common
functions with combinations of services and protocols, and by analyzing the way to build the
relationship between different services and protocols, CAST flight software service and
protocol architecture can be formed, which can be applied to remote sensing, navigation,
telecommunication, crewed spaceships, and so on.

Common functions mapping to services and protocols are presented in table 3-1.

Table 3-1: Common Functions Mapping to Services and Protocols

No. Function
SOIS Services and

Protocols
SLS Services
and Protocols

SIS Services
and Protocols

ECSS Services and
Protocols

1 Telemetry
management

MTS, DDPS, DAS,
DVS, TAS, PS,
MAS, SYNC

TC, COP-1 (for
earth orbit only),
AOS, SPP,
Encapsulation
Protocol

AMS, UDP,
IPv6, IP over
CCSDS

PUS Housekeeping and
diagnostic data reporting
service, PUS parameter
statistics reporting
service, PUS Onboard
storage and retrieval
service, packet
forwarding control
service, ECSS 1553B

2 Telecommand
management

MTS, DAS, DVS,
TAS, PS, MAS,
SYNC

TC, COP-1, AOS,
SPP,
Encapsulation
Protocol

AMS, UDP,
IPv6, IP over
CCSDS

PUS Telecommand
Verification Service, PUS
Device command
distribution service, PUS
Onboard operations
scheduling service,
ECSS 1553B

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page 3-6 November 2021

No. Function
SOIS Services and

Protocols
SLS Services
and Protocols

SIS Services
and Protocols

ECSS Services and
Protocols

3 Housekeeping
management

MTS, DDPS, DAS,
DVS, TAS, PS,
MAS, SYNC

TC, COP-1, AOS,
SPP,
Encapsulation
Protocol

AMS, UDP,
IPv6, IP over
CCSDS

PUS Event reporting
service, PUS Onboard
monitoring service, PUS
event-action service,
PUS Memory
management service,
ECSS 1553B

4 Time
management

MTS, DAS, DVS,
TAS, PS, MAS,
SYNC

TC, COP-1, AOS,
SPP,
Encapsulation
Protocol

AMS, UDP,
IPv6, IP over
CCSDS

PUS Time management
service, ECSS 1553B

5 Thermal
control
management

MTS, DDPS, DAS,
DVS, PS, MAS

TC, COP-1, AOS,
SPP,
Encapsulation
Protocol

AMS, UDP,
IPv6, IP over
CCSDS

PUS Event reporting
service, PUS Onboard
monitoring service, PUS
event-action service,
PUS Device command
distribution service, PUS
function management
service, ECSS 1553B

6 Power
management

MTS, DDPS, DAS,
DVS, PS, MAS

TC, COP-1, AOS,
SPP,
Encapsulation
Protocol

AMS, UDP,
IPv6, IP over
CCSDS

PUS Event reporting
service, PUS Onboard
monitoring service, PUS
event-action service,
PUS Device command
distribution service, PUS
function management
service, ECSS 1553B

7 Unlock and
rotation gear
control

MTS, DDPS, DAS,
DVS, PS, MAS

TC, COP-1, AOS,
SPP,
Encapsulation
Protocol

AMS, UDP,
IPv6, IP over
CCSDS

PUS Event reporting
service, PUS Onboard
monitoring service, PUS
event-action service,
PUS Device command
distribution service,
ECSS 1553B

Based on table 3-1 as well as the results of selection and analysis of standard services and
protocols, the service and protocol architecture of CAST flight software is formed as shown
in figure 3-1.

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page 3-7 November 2021

ECSS
1553B

Bus Link
Protocol

TC Space
Data Link
Protocol

Packet
Service

Memory
Access
Service

Subnetwork
Layer

AOS
Space

Data Link
Protocol

Space
Link

Transfer
Layer

Asynchronous
Message
Service

Device Access
Service

1553B ML Local
Memory

Onboard
Link

Application
Support
Layer

Application
Management

Layer

Thermal
Control

Management
Service

Power
Management

Service

HouseKeeping
Management

Service

Time
Management

Service

Telemetry
Management

Service

Telecommand
Management

Service

Message
Transfer
Service

Backplane Bus

TM Sync.
and

Channel
Coding

TC Sync.
and

Channel
Coding

MIL-STD-
1553B Bus

Link
Protocol

Device Data
Pooling Service

Space Packet
Protocol

Synchronisation
Service

Clock

Time Access
Service

UART DS

Device
Virtualisation

Service Cmd & Data
Acquisition

Service

ECSS PUS

Radio Frequency and
Modulation Systems

COP-1

Convergence Layer

Application
Layer

UDP
Encapsulation

Service
IP over
CCSDS

IPv6

Figure 3-1: CAST Flight Software Service and Protocol Architecture

The architecture consists of 3 layers: Application Layer, Transfer Layer, and Subnetwork
Layer, which are as follows:

a) Application Layer

 The Application Layer consists of the Application Management Layer and the
Application Support Layer. The Application Management Layer includes top level

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page 3-8 November 2021

functions such as telemetry management, telecommand management, housekeeping
management, time management, thermal control management, power management,
unlock and rotation gear control, etc. The functions can be provided by combining
underlying layer services.

 The Application Support Layer includes SOIS services such as CDAS, TAS, MTS,
and standard services defined by PUS.

b) Transfer Layer

 SPP is used in Transfer Layer for routing, which is extended with Source APID or
Destination APID added in the secondary header of space packet. UDP and IP are
also supported in this layer.

c) Subnetwork Layer

 Subnetwork Layer contains space data link and onboard data link services and
protocols, which can support the Transfer Layer and Application Support Layer.
Space data link function is provided by TC, COP-1, and AOS. Onboard data link
function is provided by PS, MAS, and SYNC. Each onboard data link can support
standard subnetwork service through corresponding convergence layer protocols and
data link protocols, which can shield the difference of data links. The supported data
link includes 1553B, UART, ML, DS, etc. It can be easily extended to support other
buses and interfaces.

The relationship between SOIS services and other standards is detailed in 3.3, the
relationship between SOIS services is detailed in section 4, and the interface between SOIS
services and devices is detailed in section 5.

The services and protocols in the architecture are implemented by the corresponding
software components in the software architecture, the relationship is shown in figure 3-2.

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page 3-9 November 2021

ECSS
1553B

Bus Link
Protocol

TC Space
Data Link
Protocol

Packet
Service

Memory
Access
Service

Subnetwork
Layer

AOS
Space

Data Link
Protocol

Space
Link

Transfer
Layer

Asynchronous
Message
Service

Device Access
Service

1553B ML Local
Memory

Onboard
Link

Application
Support
Layer

Application
Management

Layer

Thermal
Control

Management
Service

Power
Management

Service

HouseKeeping
Management

Service

Time
Management

Service

Telemetry
Management

Service

Telecommand
Management

Service

Message
Transfer
Service

Backplane Bus

TM Sync.
and

Channel
Coding

TC Sync.
and

Channel
Coding

MIL-STD-
1553B Bus

Link
Protocol

Device Data
Pooling Service

Space Packet
Protocol

Synchronisation
Service

Clock

Time Access
Service

UART DS

Device
Virtualisation

Service Cmd & Data
Acquisition

Service

ECSS PUS

Radio Frequency and
Modulat ion Systems

COP-1

Convergence Layer

Application
Layer

UDP
Encapsulation

Service
IP over
CCSDS

IPv6

Hardware

CPU Clock

UART

Watchdog

Backplane
Bus

ROM RAM

Operating
System
Layer

Real-time
Kernel BSP Device

Drivers

MTS
Component

DDPS
Component

TAS
Component

Space Packet
Component

Space Subnet Components

PUS Service Components

Basic
Function
Library

System
Configu
-ration
Manage
-ment

Application
Management

Layer

Thermal
Control

Management
Application

Power
Management
Application

Time
Management
Application

Housekeeping
Management
Application

Application
Support
Layer

Transfer
Layer

Subnetwork
Layer

Middleware
Layer

Onboard Subnet Components

Telemetry
Management
Application

Telecommand
Management
Application

Operating System API

Middleware API

DAS
Component

DVS
Component

1553B

AN DS ML On/off
Command

Unlock And
Rotation Gear

Control
Application

TTE

UDP Component

IPv6 Component

Encapsulation
Service

Component

IP Over
CCSDS

Component

Figure 3-2: Relationship between Service and Protocol Architecture and Software
Architecture

3.3 RELATIONSHIP BETWEEN SOIS AND OTHER STANDARDS

3.3.1 GENERAL

As specified in 3.2.3, the service and protocol architecture involved in CAST flight software
contains services and protocols from CCSDS SLS, SIS, SOIS, and ECSS PUS. This section
will focus on the relationship between SOIS services and other standards, including the

a) relationship between SOIS services and PUS services;

b) relationship between SOIS services and SLS protocols;

c) relationship between SOIS services and SIS protocols.

3.3.2 RELATIONSHIP BETWEEN SOIS SERVICES AND PUS SERVICES

3.3.2.1 Overview

In the service and protocol architecture, 13 services of PUS are adopted, which include
telecommand verification service, device command distribution service, housekeeping and
diagnostic data reporting service, parameter statistics reporting service, event reporting
service, memory management service, function management service, time management
service, onboard operations scheduling service, onboard monitoring service, packet
forwarding control service, onboard storage and retrieval service, event-action service. SOIS
has provided standard service interfaces to upper layer, which can isolate the difference

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page 3-10 November 2021

between data links and protocols. So that SOIS can be used as the underlying supportive
service, making the implementation of PUS services focusing more on the algorithm.

PUS services mainly use SOIS Application Support Layer services, the using method is as
follows:

a) DDPS is used to acquire data;

b) DVS is used to send command;

c) MTS is used to send and receive packets;

d) TAS is used to get onboard time.

Three recommendations are shown below to describe the relationship between PUS and
SOIS services.

3.3.2.2 PUS Onboard Monitoring Service

PUS onboard monitoring service is used to automatically monitor types of onboard specific
parameters, and generates an event report if a parameter value is over its threshold. PUS
onboard monitoring service needs to acquire the monitored parameter values during its
operation, and transfer the generated event report as telemetry packet to the ground or other
application processes inside the spacecraft. The acquisition of parameter values can be
accomplished by SOIS command and data acquisition service, and the transmission of event
report can be accomplished by PUS packet transmission control service and SOIS MTS. This
section focuses on the interface relationship between PUS onboard monitoring service and
SOIS command and data acquisition service.

SOIS command and data acquisition service consist of DDPS, DVS, and DAS. According to
the requirement of PUS onboard monitoring service, DDPS can be used to acquire the
monitored parameters.

DDPS provides 11 service primitives. The process of primitive interaction is as follows:

a) onboard monitoring service calls ADD_ACQUISITION_ORDER.request primitive to
add order, the parameter Device Value List in the primitive corresponds to the
monitored parameters, and the parameter Acquisition Interval in the primitive
corresponds to the parameter monitoring interval;

b) DDPS issues an ADD_ACQUISITION_ORDER.indication primitive to return the
Acquisition Order Identifier to the onboard monitoring service;

c) onboard monitoring service calls START_ACQUISITIONS.request primitive, using
the Acquisition Order Identifier to start the acquisition;

d) DDPS issues START_ACQUISITIONS.indication primitive to pass the result of the
request to onboard monitoring service and start the background data acquisition

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page 3-11 November 2021

process, which will use DAS or DVS to acquire the data according to the attribute of
the devices in the order;

e) after DDPS accomplishes the acquisition, if the Asynchronous Acquisition Indication
Flag is set in the order, it then issues an ACQUISITION.indication primitive to the
onboard monitoring service;

f) when the indication is received or the running cycle is due, the onboard monitoring
service will use a READ_SAMPLES.request primitive to acquire the data samples;

g) onboard monitoring service issues a READ_SAMPLES.indication primitive to
deliver the Samples and Result Metadata to onboard monitoring service;

h) onboard monitoring service judges the parameters and actions according to certain
algorithm using the Samples and Result Metadata.

In the process as described above, the cooperation between the services is the key to
achieving the parameter conversion between the services. In step a), mapping the Para_id in
the PUS Onboard Monitoring Service to the Device Value List in DDPS is a problem to be
solved. A design example is given for reference. In this example, the Para_id is correlated
with the parameter code of the engineering application. And a special parameter is used for
each subsystem. For instance, the parameter code TMSXXX is used to represent the
parameters of data management subsystem. Para_id can be converted according to table 3-2.

Table 3-2: Settings of Para_id

Subsystem identification Corresponding parameter channel ID

5bit (corresponding to TMS) 11bit (corresponding to XXX)

The first 5 bits are used to identify the subsystems. For example, 0x07 is the ID of data
management subsystem, and 0~63 are the corresponding parameter channel IDs of the
collected analog channels. In this way, the 1st to 64th analog communication channels of the
data management subsystem can be represented by TMS001~TMS064. The corresponding
Para_id ranges from 0x3800 to 0x3840.

In DDPS, Device Value List consists of an array of identifiers, including the 16-bit
Device_id, 16-bit Value_id, and 8-bit Service_type, which represents the use of DAS or
DVS. A look-up table for Para_id and Device Value List is created in DDPS. When onboard
monitoring service needs to add new monitored parameters, Para_id can be converted to
Device_id, Value_id, and Service_type, and then the set of converted parameters can be
input into the Device List through ADD_ACQUISITION_ORDER.request primitive. When
DDPS is collecting in the background, Device_id and Value_id can be used as input
parameters of the underlying DAS or DVS, so that the device parameters acquisition is
completed.

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page 3-12 November 2021

3.3.2.3 PUS Onboard Operations Scheduling Service

PUS onboard operations scheduling service is used to provide the time-tagged command
sending control. It can receive commands from other ground or spacecraft applications, add
or delete commands that need to be regularly executed in its schedule, and download the
schedule. This service usually runs periodically. It obtains the spacecraft onboard time
through TAS and compares the onboard time with Time Tag in the enabled sub-schedule.
The command is sent to the destination by MTS when time is due. This service mainly uses
SOIS TAS and MTS.

The application process of PUS onboard operations scheduling service is illustrated through
an example of sending a PUS telecommand packet when time is due. In this example, the
application process of APID_A in onboard operations scheduling service is set to 0x421, and
the destination application process APID_B is set to 0x422.

a) onboard operations scheduling service (application process APID_A) calls
Register.request primitive of MTS to complete the registration;

b) telecommand packet destination application process APID_B uses the same process
to complete registration and sends an Assert_invitation.request invitation with the
subject of command message;

c) application process APID_A replies Assert_invitation.indication to application
process APID_B to accept the invitation;

d) onboard operations scheduling service runs periodically, calling the TIME.request
primitive of TAS to get onboard time, and TAS issues TIME.indication to return the
onboard time to onboard operations scheduling service;

e) onboard operations scheduling service compares the onboard time with the Abs/Rel
Time Tag in the enabled sub-schedule and calls the Send.request of MTS to send the
telecommand packet to the destination application process APID_B, which is
identified by APID of Telecommand packet when time is due;

f) the destination application process APID_B receives the telecommand packet through
Message.indication primitive of MTS and performs the further processing.

In step f), the mapping of parameters in the Send.request primitive is a problem to be solved.
The complete form of Send.request primitive is Send.request (SAP, continuum ID of
destination, unit ID of destination, module number of destination, subject ID, [priority], [flow
label], application data length, [application data], [context]), in which the data destination is
identified by three parameters, namely continuum ID of destination, unit ID of destination,
and module number of destination.

In order to facilitate the transmission of PUS packet, the upper interface of MTS is
encapsulated, and an AMS node is identified by APID. The continuum ID, Unit ID, and
module number used by APID and AMS are stored in the address mapping table of AMS
internal node. For example, after APID_B registration, continuum ID, unit ID, and module
number can be queried in the address mapping table through APID_B.

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page 3-13 November 2021

3.3.2.4 PUS Device Command Distribution Service

PUS device command distribution service is used to send device command in real time. It
includes three service subtypes. This section takes distributing register load commands sub-
service as an example to illustrate its relationship with SOIS services. PUS distributing
register load commands sub-service receives requests from ground users or spacecraft
applications and sends the register load command. SOIS command and data acquisition
services consist of DDPS, DVS, and DAS. According to the demand of distributing register
load commands sub-service, the DVS can be used to complete register load commands
distribution. The detailed application process is as follows:

a) When distributing register load commands sub-service is activated to run, a
Transaction Identifier is allocated to each command in the telecommand packet, and
parameters in the command are converted to corresponding parameters in DVS. The
converted parameters along with Transaction Identifier are used as the input
parameters of the COMMAND_DEVICE.request primitive of DVS, and command is
recorded into the queue of executing commands by DVS.

b) After DVS sending the commands through bottom-level DAS, the transferring results
return to distributing register load commands sub-service through the Transaction
Identifier and Result Metadata in the COMMAND_DEVICE.indication primitive. In
this process, Transaction Identifier comes from step a).

c) Distributing register load commands sub-service finds the corresponding commands
in the queue of executing commands according to the Transaction Identifier, and
performs further process according to the returned results.

In the process, as described above, the conversion between the register address in distributing
register load commands sub-service and DVS primitives is a key issue. The register address
is used in the data domain of PUS distributing register load commands sub-service. Similar
to the previous telemetry parameter numbering, the instruction code TCSXXX can be used to
represent the instructions of the data management subsystem and is associated with the
register address. Addresses can be defined using the following rules:

Table 3-3: Settings of Register Address

Subsystem identifier
Corresponding register load commands channel
code

5bit 11bit

Subsystem identifier is defined by the project. Taking the data management subsystem as an
example, if the data management computer in the system has two register load command
channels, the identifier can be designed as table 3-4.

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page 3-14 November 2021

Table 3-4: Example of Register Load Command Channel Identifier

Command ID register load channel
Subsystem identifier
(5bit)

Corresponding register
load command channel
code (11 bit)

TCS001 ML1 0x7 0

TCS002 ML2 0x7 1

In the computer DVS, one register load command virtual device can be configured, and the
corresponding virtual device table is listed as shown in table 3-5.

Table 3-5: Virtual Device Table

Virtual Device ID
(16 bit)

The total number of
virtual value ID (16 bit)

Address of virtual value resolution
table (32 bit)

513 (register load
command virtual
devices)

2 Virtual value resolution table address of
the register load command virtual
devices

Virtual value resolution table of the register load command virtual devices is shown as
table 3-6.

Table 3-6: Virtual Value Resolution Table of the Register Load Command Virtual
Devices

Order
number
(Virtual
value)

Corresponding
physical device

Physical device
ID (32 bit)

Physical
value ID Length Offset

Data
buffer
address

Device
access
type

0 ML1 command
sending device

8 0 1024 0 null Universal
device
access
DACP

1 ML2 command
sending device

9 0 1024 0 null Universal
device
access
DACP

In the distributing register load commands sub-service, the look-up table to configure a
register address along with the virtual device ID and virtual value ID is illustrated as
table 3-7.

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page 3-15 November 2021

Table 3-7: Virtual Value Resolution Table of the Register Load Command Virtual
Devices

Register Address
16 bit
(Corresponding to the
command ID)

Virtual device ID
16 bit

Virtual value ID
16 bit

TCS001~TCS002 513 (ML command virtual device) 0~1

In the distributing register load commands sub-service, virtual device ID and virtual value ID
are obtained by looking for table 3-7 according to register address and are then transmitted to
DVS together with data. DVS can search the Virtual Device Table by virtual device ID to get
the corresponding virtual value resolution table address and then look for the virtual device
according to the virtual value ID. The value resolution table obtains the corresponding
physical device ID, physical value ID, as well as other parameters, and sends the data
through DAS.

3.3.3 RELATIONSHIP BETWEEN SOIS SERVICES AND SLS PROTOCOLS

Protocols from SLS domain used in CAST FUHSI include TC, AOS, SPP, and Encapsulation
Protocol. Telecommand function can be accomplished by TC and SPP, or Encapsulation
Protocol together with ECSS PUS. Telemetry function can be fulfilled by AOS and SPP, or
Encapsulation Protocol together with ECSS PUS. SPP or Encapsulation Protocol are the key
to building the relationship between SOIS services and SLS protocols.

For telecommand, the application process is as follows:

a) TC space data link protocol receives and processes TC transfer frame; space packets
or encapsulation packets will be extracted and delivered to the Transfer Layer using
MAPP.indication or VCP.indication primitive, based on the service type the transfer
frame used.

b) SPP of the Transfer Layer gets the space packet in order through PACKET.request
primitive, together with APID and other information, which will then route the packet
according to the APID. Space packets will be delivered to the user through
PACKET.indication primitive. Encapsulation Protocol gets packet from the interface
which is supplied to underlying protocol, sends the packet to user.

The user mentioned here has two types: one refers to services, protocols, or other
applications that are above the Transfer Layer; the other refers to other nodes, for which the
Subnetwork Layer Packet Service will be used, and which will be responsible for routing the
packet.

For telemetry, the application process is as follows:

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page 3-16 November 2021

a) User requests to transfer a space packet using PACKET.request primitive of SPP,
together with parameters such as space packet and APID. Additionally, user transfers
an encapsulation packet using Encapsulation Protocol, together with parameters.

b) SPP routes the packet according to APID. When the destination of the APID is the
ground, PACKET.request primitive of AOS will be called to transfer the packet to
AOS protocol entity. Encapsulation Protocol gets data transmitted to ground,
encapsulates the data into a packet, and calls the PACKET.request primitive of AOS
to transfer the packet to AOS protocol entity.

c) AOS protocol entity creates the transfer frame and sends it to the ground.

3.3.4 RELATIONSHIP BETWEEN SOIS SERVICES AND SIS PROTOCOLS

AMS and UDP/IP of SIS are used in CAST flight software. The former is the underlying
service of MTS, helping accomplish the function of message transfer. Data transmission can
be fulfilled by the latter together with Encapsulation Protocol, SOIS protocols, and PUS
protocols of ECSS. Additionally, AMS can also be used between two spacecraft or between
spacecraft to ground.

In the application process, through analyzing the recommendation to tailor AMS in MTS and
considering the complexity and efficiency of software implementation, AMS has been
further tailored, which includes:

a) There is no single central node, that is, Configuration Server of AMS in the
spacecraft, all registers have equal authority, which forms distributed network
architecture that has no central node.

b) MIB maintained by MTS includes a user table and information requirements table.
The user table contains all user IDs and addresses in the spacecraft; the information
requirements table contains the expected subjects, IDs of information requesters, and
priorities of information.

c) Management information is synchronized when MTS starts. Synchronization request
will be sent to MTS of other devices. User table and information requirements table
will be acquired from other devices, in order to synchronize the local ones.

d) MTS of different devices has no cyclic exchange of Synchronization service, except
for initial stage.

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page 3-17 November 2021

3.3.5 RELATIONSHIP BETWEEN SOIS SERVICES AND UDP/IP PROTOCOLS

The UDP/IP protocols are used in CAST FUHSI in the transfer layer, and IPv6 is the key to
connect the onboard subnet and space subnet.

The relationship is as follows:

a) The SOIS Application Support Layer services such as MTS can use UDP/IP to send
and receive messages.

b) IPv6 protocol use SOIS subnetwork packet service to send and receive IPv6
datagrams.

An example is shown as follows.

Transfer
Layer

Subnetwork
Layer

Application
Layer

Satellite4

Optical
Communication
Physical Layer

APP3

PUS

IPv6

AOS

IPv6

UDP

Satellite1

IPv6

UDP

Encapsulation
Service

IPoC

Onboard
Terminal

RF Modulation

Satellite3Satellite2

Laser

Optical
Communication
Synchronization

and Coding

TTE
Physical
Layer

TTE
Link Layer

Convergence
Layer

Packet
Service

RF
Modulation

AOS

Encapsulati-
on Service

IPoC

TM Syn.
and Coding

AOS

Encapsulation
Service

IPoC

TM
synchronization

and coding

AMS

APP1

PUS

AMS

APP2

PUS

IPv6

UDP

AMS

TTE
Physical
Layer

TTE
Link Layer

Convergence
Layer

Packet
Service

Optical Com.
Physical
Layer

AOS

Encapsulati-
on Service

IPoC

Optical Com.
Syn. and
Coding

Onboard
Computer

Space Router

Figure 3-3: Example of Protocol Configuration

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page 4-1 November 2021

4 RELATIONSHIP BETWEEN SOIS SERVICES

4.1 GENERAL

The service and protocol architecture shown in 3.2.3 uses five services from the SOIS
Application Support Layer, SPP in the Transfer Layer, and three services from the SOIS
Subnetwork Layer. The services and protocols in different layers have relevant naming
mechanisms, which have some relationship. How to establish the relationship between the
services and protocols of different layers is a key issue in the application of SOIS services
and protocols.

The chapter shall include:

a) the naming mechanism;

b) the major service relationship and addressing mechanism, which shall include the
relationship between MTS and services below, the relationship between CDAS and
services below, the relationship between TAS and services below, and the
relationship between services of the Transfer Layer and services of the Subnetwork
Layer.

4.2 NAMING MECHANISM

The hierarchy of SOIS services naming is shown in figure 4-1.

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page 4-2 November 2021

ECSS
1553B

Bus Link
Protocol TC Space

Data Link
Protocol

Packet
Service

Memory
Access
Service

Subnetwork
Layer

AOS
Space

Data Link
Protocol

Space
Link

1553B
Convergence

Transfer
Layer

AMS Device Access
Service

1553B ML Local
Memory

Onboard
Link

Application
Support
Layer

Application
Management

Layer

Thermal
Control

Management

Power
Management

HouseKeeping
Management

Time
Management

Telemetry
Management

Telecommand
Management

Other
Applications

Message
Transfer
Service

Backplane Bus

TM Sync.
and

Channel
Coding

TC Sync.
and

Channel
Coding

MIL-STD-
1553B Bus

Link
Protocol

Device Data
Pooling Service

ML
Convergence

Local
Memory

Convergence

Space Packet
Protocol

Synchronisation
Service

Clock

Time Access
Service

UART

UART
Convergence

DS

DS
Convergence

Link ID
Subnetwork Address

RT Address
RT SubAddress

Link ID
Destnation

Address
Memory ID

Memory Start
Address

Device
Name

APID

Virtual
Device ID

Virtual
Value ID

Node
ID

APID

Device
Virtualisation

Service Cmd & Data
Acquisition

Service

Physical
Device ID
Physical
Value ID

ECSS
PUS

UDP

IPv6

IP over CCSDS

Encapsulation
Service

IP
Address

Figure 4-1: The Hierarchy of Naming

a) APID is used to distinguish the applications in the Application Management Layer.

b) In the Application Support Layer, Node ID is used to identify the users of the
Message Transfer Service. The main names of DVS include Virtual Device Identifier
and Value Identifier. The main names of DAS include Physical Device Identifier and
Value Identifier. In actual application, APID or IP Address is used as Node ID
directly in MTS. Physical Device Identifier and Virtual Device Identifier are assigned

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page 4-3 November 2021

for each interface of the device module, and the data of the interface can be identified
with the Physical Value Identifier.

c) In the Transfer Layer, the packets are routed with APID or IP Address. Each device
in the network is assigned one or more APID or IP Address.

d) In the Subnetwork Layer, the Packet Service has several names, such as Link ID,
Subnetwork Address, and so on. In application, Link ID together with Subnetwork
Address comprises the Packet Destination Service Access Point (PDSAP) address in
the Packet Service primitive. Packet Service chooses the convergence link by Link
ID. When 1553B link is chosen to implement Packet Service, the 1553B convergence
service converts the Subnetwork Address to an RT address and one or more RT sub-
addresses. The Memory Access Service has names including Link ID, Subnetwork
Address, Memory ID, Start Memory Address, and so on. Link ID, together with the
Subnetwork Address, comprises the Destination Address in the Memory Access
Service primitive. Because packets transmitted from the Transfer Layer to
Subnetwork Layer include the source address and destination address, the Packet
Source Service Access Point (PSSAP) address of the Packet Service primitive and the
MASAP address of Memory Access primitive are not used. The driver of a device is
identified by the device name.

The naming relationship of different layers and specific addressing mechanisms are shown in 4.3.

4.3 MAJOR SERVICES RELATIONSHIP AND ADDRESSING MECHANISM

4.3.1 IDENTIFICATION OF RELATIONSHIPS BETWEEN CDAS AND
SERVICES UNDERLYING

CDAS includes DDPS, DAS, and DVS. DDPS gets device data through DAS or DVS. DVS
sends commands to devices or acquire data from devices through DAS.

CDAS establishes the relationships with services below through DAS. The major functions
of DAS include:

a) identifying the devices and parameters in the device access request of users;

b) selecting the corresponding access service type, calling the access services of lower
layer through Transfer Layer, or sending the access requests to DAS on the remote
device;

c) receiving access results, storing them for the user, or sending the results to DAS on
the remote device;

d) submitting the access results obtained to the user.

The following highlights the relationship between DAS and the services below. In the DAS
Recommendation Book, the interaction between DAS and the underlying services includes
Packet Service and Memory Access Service.

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page 4-4 November 2021

In CAST FUHSI, two DAP types of DAS are further divided, including:

a) DAP based on Packet Service. The protocol engine in DAS exchanges packets with
the protocol engine in the device through the underlying Packet Service. The protocol
engine in the device performs the actual operations on the device. This class includes
three types:

1) Packet-send DAP: devices send packets asynchronously. A typical application
scenario is that the processor software collects the data of other subsystem
devices attached to the DS interface and collects the packet data from other
subsystem devices (only support Packet Service) through 1553B bus.

2) Packet-receive DAP: devices receive packets. A typical application scenario is
that the processor software sends ML commands to other subsystem devices
attached to the ML interface and transmits packet data to other subsystem bus
terminals (no Application Support Layer, only support Packet Service).

3) DAP based on remote packet access: both devices communicate with each other
through remote device access protocol to enable remote device access. A typical
application scenario is that the computer gets accesses to the interfaces of other
subsystem devices through remote access DAP with 1553B bus.

b) DAP based on Memory Access Service. The protocol engine in DAS determines the
location of the memory to be read or written to and gets access through the
underlying Memory Access Service. This class includes 2 types:

1) Universal memory access DAP: the computer performs read and write operations
to the memory through Memory Access Service directly. A typical application
scenario is that the processor module acquires the internal state telemetry of other
modules.

2) Analog data access DAP: the computer needs to filter the data acquired through
the universal memory access DAP and submits to the user. A typical application
scenario is that the processor module collects the analog data of the analog
acquisition module.

DAS communicates with Packet Service and Memory Access Service through Transfer
Layer uniformly. The following illustrates the process with commands sending program:

a) The user calls COMMAND_DEVICE.request of DAS to send a command to a
device. The incoming parameters include Physical Device Identifier, Value Identifier,
data, etc.

b) According to the Physical Device Identifier, DAS determines that the device can be
communicated with through Packet Service. Then it can obtain the corresponding
device APID based on Physical Device Identifier and Value Identifier, and transmits
information such as APID and data to the Transfer Layer with the PACKET.request
primitive.

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page 4-5 November 2021

c) Transfer Layer routes packets according to APID and sends data through the
Subnetwork Layer Packet Service. The specific process of the Transfer Layer is
described in 4.3.4.

If the command is issued by a remote device in the above procedure, the DAS in step b)
knows that the device is a remote device, organizes the command of DAS as one or more
space packets, and transmits the packets to the remote device through Transfer Layer. The
remote DAS receives the command packets through Transfer Layer, resolves the command,
and executes the command locally. The results of execution are sent to the initiator’s DAS
through the Transfer Layer, and the initiator’s DAS returns the results to the user.

4.3.2 IDENTIFICATION OF RELATIONSHIPS BETWEEN MESSAGE
TRANSFER SERVICE AND SERVICES UNDERLYING

The PDU generated by MTS needs to be transmitted through the lower layer service. In the
AMS standard (reference [13]), the lower transfer services can use TCP, UDP, FIFO, vxmq,
smmq, and other protocols or mechanisms to implement data transmission. In CAST FUHSI,
the data shall be transmitted through the Transfer Layer in a unified way, which currently
supports SPP and UDP/IP and can be further extended.

Taking the message transmission of MTS and SPP as an example, its interaction process with
the underlying services is as follows:

a) After registration and invitation by the receiver, the user sends a Send.request to
MTS, and the destination is identified by APID.

b) MTS organizes the data into a PDU and checks whether the application procedure of
the destination is local according to the APID lookup table. If the destination is local,
the destination application procedure is sent through the local memory directly. If it is
not local, PDU, destination APID, and other parameters are sent to the Transfer Layer
together.

c) According to APID, the Transfer Layer can get subnetwork Packet Service
parameters and send data to the Packet Service, which sends the data to the
destination with the convergence link between processors.

d) The destination receives the data through the Subnetwork Layer, and passes the data
to the Transfer Layer. The Transfer Layer sends the data to MTS, which submits the
data to the user.

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page 4-6 November 2021

4.3.3 IDENTIFICATION OF RELATIONSHIPS BETWEEN TIME ACCESS
SERVICE AND SERVICES UNDERLYING

TAS interacts with the Synchronization Service of the Subnetwork Layer and is used to
acquire the spacecraft time. In the specific application process, time is divided into two
types, that is, absolute time and relative time. Taking the absolute time acquisition as an
example, the interaction process is as follows:

a) the user invokes TIME.request primitive of TAS;

b) TAS invokes the TIME.request primitive of the Synchronization Service upon receipt
of the request;

c) the TIME.request primitive of the Synchronization Service invokes the corresponding
device driver of the clock to obtain the current spacecraft time and returns the time to
TAS through TIME.indication;

d) TAS receives the time and returns it to the user through its TIME.indication
primitive.

In addition to acquiring the spacecraft time, TAS also provides the ALARM and
METRONOME functions, both of which are supported through the timer of the operating
system.

4.3.4 IDENTIFICATION OF RELATIONSHIPS BETWEEN TRANSFER LAYER
AND SUBNETWORK LAYER

The Transfer Layer can interact with the Packet Service and Memory Access Service of the
Subnetwork Layer.

Taking sending data to the ML interface as an example, the interaction process between the
Transfer Layer and the Packet Service is as follows:

a) the upper layer service or protocol invokes the PACKET.request primitive of the
Transfer Layer to send data;

b) the Transfer Layer routes packets according to APID in the primitive, obtains the
corresponding Link ID and Subnetwork Address (corresponding to PDSAP address
parameter of the Subnetwork Layer Packet Service), service type, channel, priority
and so on, and invokes PACKET_SEND.request primitive of Subnetwork Layer
Packet Service;

c) the Packet Service of the Subnetwork Layer gets the corresponding link convergence
from the lookup table based on the link ID and calls the sending interface of ML link
convergence;

d) ML Link Convergence gets the device name of device driver, and sends the data
through the driver according to the pre-configured device driver parameters.

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page 4-7 November 2021

Taking analog data acquisition as an example, the interactive process between Transfer
Layer and Memory Access Service is as follows:

a) The upper layer service (e.g., DAS) organizes the read commands of the Memory
Access Service into packets, which contain all parameters of the command, and then
invokes PACKET.request primitive of Transfer Layer to send data.

b) The Transfer Layer routes packets according to APID in the primitive, knows the
corresponding service is Memory Access Service, and sends data to Memory Access
Service.

c) The Memory Access Service resolves the Memory ID from the packet, gets the
corresponding device driver name from lookup table, and calls the device driver to
read the device data. After returning the device data, the result is organized into a
response packet, and the destination is DAS. The packet and the destination APID are
forwarded to the Transfer Layer.

d) The Transfer Layer forwards the response packets to DAS according to the
destination APID.

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page 5-1 November 2021

5 RELATIONSHIP BETWEEN SOIS SERVICES AND DEVICE
HARDWARE

5.1 GENERAL

It is also very important to build the relationships between SOIS services and the specific
devices of the CAST avionics system while applying the SOIS services to CAST FUHSI.
The hardware-related services in SOIS mainly include:

a) Packet Service in subnetwork layer and convergence layer functions, which need to
be provided by specific onboard links so there are mapping relationships between
links (e.g., 1553B bus link, DS/ML interface) and these functions.

b) Memory Access Service, which offers memory read/write operations. It should
establish a relationship to these memory operations of actual hardware within the
architecture.

c) Synchronization Service in subnetwork, which is a time-related service; therefore it
should deal with the clock interface of hardware.

d) DAS, DVS, and DDPS, which are related to the hardware devices in the system and
need to establish the mapping relationship with each device in the spacecraft.

This section first analyzes the hardware types in CAST avionics system, and then gives
specific access methods in accordance with the classification of hardware.

5.2 DEVICE TYPES ANALYSIS IN CAST AVIONICS SYSTEM

From the intelligence level point of view, devices in spacecraft can be divided into three
categories:

a) Intelligent nodes: these nodes provide strong processing ability and support a
complete protocol stack with message processing capabilities, which can handle peer-
to-peer communication. The protocols (e.g., MTS) used in these nodes can perform
the functions including: subscribing a set of interested data without knowing the
senders, publishing their own data without knowing the receivers, querying interested
data, etc. Typical representatives of intelligent nodes are common processor modules
of OBDH onboard computers, attitude control computer, and payload management
computer.

b) Simple intelligent nodes: these nodes are slightly less intelligent than intelligent
nodes and only support transfer and subnetwork services, while having space packet
processing ability. Typical representatives of simple intelligent nodes are the
telemetry data collecting module and command send module.

c) Non-intelligent nodes: these nodes are typically controlled by intelligent nodes or
simple intelligent nodes, which can send/receive original data or space packets.

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page 5-2 November 2021

Typical representatives of non-intelligent nodes are devices which are attached to
On/Off command, AN, DS, ML interface, and so on.

d) The following parts take a design of spacecraft avionics system, for example, and
demonstrate how its nodes work. The instance of avionics system includes one
Spacecraft Management Unit (SMU) and one Spacecraft Data Interface Unit (SDIU).
SMU and SDIU are assembled by standard modules. Modules are connected via
backplane bus. In this example, 1553B bus is used for communication between SMU,
SDIU, and other subsystem devices. The composition diagram is shown in figure 5-1.

Figure 5-1: Hardware Platform Composition Diagram of Avionics System

The designed avionics system provides external interfaces including:

a) TM/TC interface;

b) command interface: including ON/OFF interface, ML interface, etc.;

c) data collection interface: including analog collection interface, DS interface, etc.;

d) bus interface: including 1553B bus, etc.

SMU and SDIU both have strong processing abilities and processor modules that can be
considered as intelligent nodes. Other subsystem devices that are connected to the 1553B bus
can be divided into intelligent and simple intelligent nodes. Intelligent nodes exchange data
through MTS, while simple intelligent nodes use the Subnetwork Layer Packet Service for
communication.

Other subsystem devices that are connected to the command interface or data collection
interface can be considered as non-intelligent nodes. In this case, the processor module in
SMU or SDIU can require/distribute data via DAS, PS, MAS, and device drivers.

Subsection 5.3 gives access methods for specific nodes.

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page 5-3 November 2021

5.3 HARDWARE NODES ACCESS METHODS IN AVIONICS SYSTEM

5.3.1 ACCESS METHODS OF INTELLIGENT NODES

The protocol configuration of two intelligent nodes that are communicated through a 1553B
bus is shown in figure 5-2.

Figure 5-2: Protocol Configuration of Intelligent Nodes through 1553B

Protocols of each layer are configured as follows:

a) Application Layer: the application process in the two intelligent nodes can subscribe,
publish, and send messages via the primitives provided by MTS; different nodes can
be distinguished by APID.

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page 5-4 November 2021

b) Application Support Layer: MTS uses AMS for implementation; the underlying
protocol uses SPP.

c) Transfer Layer: SPP provides packet transmission to the upper layer and uses the
Packet Service to send/receive data on the bus or the other links.

d) Subnetwork Layer: Data are sent or received through the Packet Service, 1553B
convergence layer, ECSS1553B bus link protocol, MIL-1553B bus link protocol, and
physical hardware.

The key to establishing a connection with the hardware is the Subnetwork Layer. Because
different data links have different protocols, in order to provide a unified interface to the
upper layer, the Packet Service in Subnetwork Layer should provide a uniform packet
sending interface to the upper layer applications so as to shield the differences between
underlying data links. Then the upper layer applications will not need to be concerned with
the differences between different heterogeneous physical link characteristics, interface
features, and transmission performance. Once the destination address and the QoS
requirements are determined, the upper layer (e.g., Transport Layer) will choose the suitable
links according to destination device conditions and data transmission requirements. Finally,
the data will be sent to the destination or waypoint through the convergence layer. If one hop
cannot reach the destination directly, the data may pass through several waypoints.

In order to achieve the purpose of shielding the underlying data links in the Subnetwork
Layer, the convergence layer is a key point. Because different links adopt different protocols,
it is difficult to define a unified protocol for convergence layer. In actual implementation,
different links may have different convergence protocols. The Packet Service in the
Subnetwork Layer selects the convergence layer send interface according to the
identification passed from the upper layer (included in the primitive parameters of PDSAP),
and the device driver will send the data through actual onboard links.

Taking the 1553B bus link for example, 1553B interface service protocol defined by ECSS
can be applied, and a convergence layer can be added on top. The purpose is to add the
segmentation function to support up to 64K bytes packets transmitted through the 1553B bus.
And in order to match the max packet length between space link and onboard link, TC and
AOS protocol also need to support 64K bytes packets. In actual implementation, the
convergence layer divides the data into the MTU length of ECSS 1553B protocol support
(usually 4K bytes), and provides the corresponding data ID, segment number, and other
information, then sends it through the device driver. When the segment data arrives, the
convergence layer in the receiver end will read the data through the device driver and
assemble each segment correspondingly, then commit to the upper layer application once the
whole packet is received.

The protocol configuration of two intelligent nodes that are communicated through TTE is
shown in figure 5-3.

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page 5-5 November 2021

Application
Management

Layer

Transport
Layer

Network
 Layer

Subnetwork
Layer

Application
Process

A

Message Transfer Service
Asynchronous Message

Service

IPv6

Packet Service

Convergence Layer of
TTE

Link Layer of TTE

Physical Layer of
TTE

Application
Management

Layer

Transport
Layer

Network
 Layer

Subnetwork
Layer

Application
Process

B

Message Transfer Service
Asynchronous Message

Service

IPv6

Packet Service

Convergence Layer of
TTE

Link Layer of TTE

Physical Layer of
TTE

Intelligent Node 1 Intelligent Node 2

UDP UDP

Figure 5-3: Protocol Configuration of Intelligent Nodes through TTE

Protocols of each layer are configured as follows:

a) Application Management Layer: the application process in the two intelligent nodes
can subscribe, publish, and send messages via the primitives provided by MTS;

b) Transport Layer: UDP provides packet transmission to the upper layer and uses the
IPv6 as the underlying layer protocol to transmit data;

c) Network Layer: IPv6 provides packet transmission to the upper layer and uses the
Packet Service as the underlying layer service to transmit data on TTE bus;

d) Subnetwork Layer: data are sent or received through the Packet Service, TTE
convergence layer, TTE bus link protocol, and physical hardware.

The key to establishing a link layer connection with the high-speed Ethernet is the TTE
Protocol of Subnetwork Layer. Additionally, in order to network with other nodes, the IPv6
and UDP protocol is the key.

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page 5-6 November 2021

5.3.2 ACCESS METHODS OF SIMPLE INTELLIGENT NODES

The protocol configuration of an intelligent node communicating with a simple intelligent
node through 1553B bus is shown in figure 5-4.

Figure 5-4: Protocol Configuration of Accessing Simple Intelligent Nodes

Protocols of each layer are configured as follows:

a) Application Layer: the application process in intelligent nodes can access data from
simple intelligent nodes through CDAS.

b) Application Support Layer: CDAS uses SPP, which is provided by the underlying
layer. For example, DAS of CDAS can be used to send/receive a space packet to
simple intelligent nodes.

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page 5-7 November 2021

c) Transfer Layer: SPP provides packet transmission to the upper layer and uses the
Subnetwork Layer Packet Service to send/receive data on the bus or the other links.

d) Subnetwork Layer: data are sent or received through the Packet Service, 1553B
convergence protocol, ECSS1553B bus link protocol, MIL-1553B bus link protocol,
and physical hardware.

The design of DAS in CDAS is the key in the process mentioned above. A list of simple
intelligent nodes should be built in DAS that is implemented in intelligent nodes, with the
different kinds of DAPs configured for each node in this list. For the above example, The
DAP for simple intelligent nodes is a packet-based DAP with three types and can be
configured according to device implementation and connection mode. When a simple
intelligent node wants to send a packet to an intelligent node asynchronously, its DAP can be
configured as a packet-send DAP, as mentioned in 4.3.1. And when a simple intelligent node
needs to receive data from intelligent node, its DAP should be configured as packet-receive
DAP, as mentioned in 4.3.1.

5.3.3 ACCESS METHODS OF NON-INTELLIGENT NODES

The protocol configuration of a non-intelligent node exchanging data with an intelligent node
using DS, ML, or a serial port interface is shown in figure 5-5.

Figure 5-5: Protocol Configuration of Accessing Non-Intelligent Nodes

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page 5-8 November 2021

Protocols of each layer are configured as follows:

a) Application Layer: the application process in intelligent nodes can access data from
non-intelligent nodes through CDAS;

b) Application Support Layer: CDAS uses SPP that is provided by underlying service,
thus, for example, DAS can send/receive a space packet;

c) Transfer Layer: SPP provides packet transmission to the upper layer and uses the
Packet Service to send/receive data on the bus or the other links;

d) Subnetwork Layer: data are sent or received through the convergence protocol of DS,
ML, etc. and physical hardware.

For each interface, it is important to configure the appropriate device driver. Convergence
protocol will connect the Packet Service, Memory Access Service and the associated device
drivers.

If the Packet Service is used in underlying layer, Device and Value Identifier Resolution
Table in DAS, routing table in SPP, link selection table in Packet Service and device name
configuration table in convergence layer shall all be configured.

Memory Access Service is used to access the interface such as analog collection and
command output. In CAST FUHSI, the implementation of Memory Access Service can be
divided into the following categories according to physical connection in hardware:

a) Remote Access: through the bus (e.g., 1553B bus) or space link access;

b) Inter-Module Access: through the I/O backplane bus;

c) Intra-Module Access: through CPU bus or local bus (e.g., CPCI) access.

Remote Access is implemented via Transfer Layer configuration, the application in
Application Support Layer encapsulates memory access requests as packets, and deploys the
destination address (e.g., APID) of the application which handles Remote Memory Access
Service, then passes the packet to the Transport Layer. The Transport Layer routes the
packet to the target application. The target application receives the memory access request
and performs an intra-module or inter-module access operation, then encapsulates the result
into a packet and transmits to the source.

Inter-module access and inter-module access are all compatible with specific device drivers.
The same device driver can handle multiple devices.

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page 6-1 November 2021

6 APPLICATION OF SEDS

6.1 GENERAL

In CAST FUHSI, the SEDS is used to describe the parameters of the device, the
configuration parameters of the system, and the configuration parameters of the service, and
the original conceptual communication management in the architecture is transformed into an
entity that describes the service configuration and connection relationship of each layer
through the SEDS.

The ultimate goal of using SEDS in CAST FUHSI is to automatically generate part of the
code through the tool after describing the above data. For the existing components, SESD are
mainly used to generate the configuration code. For the new component, SEDS are used to
generate the component code and the configuration code. SEDS can also be used as the input
for subsequent software testing.

6.2 AN APPLICATION EXAMPLE

In CAST FUHSI, there are 27 software components. A typical example of sending an ML
command, which runs through the various layers of the architecture, was chosen, as shown in
figure 6-1. The application of SEDS is illustrated by this example. Sending an ML command
involves the following services:

a) the Device Access Service of the Application Support Layer;

b) the Space Packet Protocol of the transfer layer;

c) the Packet Service of the subnetwork layer;

d) the ML Convergence Service (Convergence_ML) of the convergence layer.

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page 6-2 November 2021

Application
Management

Layer

Application
process

A

Intelligent node1

Space Packet Protocol

 Device Access Service

 Transfer
Layer

Packet Service

Convergence Layer
（Packet Service

Convergence+
ML Convergence）

ML
interface driver

Non-intelligent
node 2（ML

device）

Application
Support
Layer

 Subnetwork
Layer

Describe interface of device access service
and parameters of device access type table,
device and value identifier resolution table

by SEDS

Describe interface of space packet protocol
and parameters of routing table by SEDS

Describe interface of Space Packet
Protocol by SEDS

Describe interface of ML Convergence
Service and parameters of ML Link

Configuration table by SEDS

Figure 6-1: Sending a ML Command

6.2.1 INSTRUCTION SENDING PROCESS

The ML command is sent from the Application Layer to the Data Link Layer. The specific
sending process is as follows:

a) Application Management layer: the Device Access Service of the intelligent node
accesses the simple intelligent node;

b) Application Support Layer: configures the device identifier and value identifier of the
non-intelligent node 3: device id = 0x8, value id = 0x0. In the device access service, the
device access type, which is sending data to the device DAP, is obtained by searching
the device access type table (table 6-1) by device id. Then, through searching the device
and value identifier resolution table (table 6-2) by device id and value id, the network
address (APID) is found, and then the command and data are encapsulated into a space
packet and sent to the space packet protocol of the transfer layer.

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page 6-3 November 2021

Table 6-1: Device Access Type Table

Name
Device id
(2Byte)

Corresponding device access type DAP
(2Byte)

ML interface 1 0x8 Sending data to the device DAP

ML interface 2 0x9 Sending data to the device DAP

Table 6-2: Device and Value Identifier Resolution Table

Device id
(2Byte)

Value id
(2Byte)

Network address
(2Byte)

Start address
(4Byte)

Length
(2Byte)

0x8 0x0
0x7
(DEVICE_ID_DEV_
3)

0 1000

c) Transfer layer: In the space packet protocol, the routing table is searched by the
network address (APID=0x7) , the underlying service is identified as the subnetwork
packet service, and the subnetwork identifier is LINK_ML (subnetwork id). The
packet is then sent to the subnetwork packet service.

Table 6-3: Routing Table

Network address
(2Byte)

Mask
(2Byte)

Next hop
subnetwork id
(2Byte)

Next hop
subnetwork
address
(2Byte)

Assistant
parameter
s (4Byte)

APID_OBC_A(0x420) 0x7E0 LINK_LOCAL(0x0) 0 0

DEVICE_ID_DEV_3(0x8) 0x7FF LINK_ML1(0x6) 0 0

d) Subnetwork layer: In the packet service, according to the subnetwork id, the link type
and the corresponding component instance are found, the externally provided
interface is called according to the link type and component instance, and the
command is issued.

Table 6-4: ML Link Configuration Information

Link
Link id
(2Byte)

Link type
(2Byte)

Driver
Master
(4Byte)

Driver
Slave
(4Byte)

LINK_ML1 0x6 0 3 1

LINK_ML2 0x7 0 3 2

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page 6-4 November 2021

6.2.2 PARAMETERS AND INTERFACES TO BE DESCRIBED BY SEDS

During the instruction send process, the parameter configuration and interface are as follows:

a) Parameter configuration

The parameter configurations that need to be described are shown in table 6-1, table 6-2,
table 6-3, and table 6-4.

See annex C for the description of the parameters by SEDS.

b) Interface

1) Device Access Service of the Application Support Layer

– required interface:

 status_t (*tpPacketSend_funcp)(uint16_t src_apid, uint16_t dest_apid,
 uint8_t* packet_buffer_p, uint32_t length, uint32_t qos)

2) Space Packet Protocol of the transfer layer

– provided interface:

 status_t tpPacketSend (uint16_t src_apid, uint16_t dest_apid,
 uint8_t* packet_buffer_p, uint32_t length, uint32_t qos)

– required interface:

 status_t (*snPsSend_funcp) (uint8_t qos, uint8_t priority, uint8_t
 channel, uint8_t next_link_id, uint8_t next_sn_address,
 uint8_t *packet_buffer_p, uint32_t length)

3) Packet Service of the subnetwork layer

– provided interface:

 status_t snPsSend (uint8_t qos, uint8_t priority, uint8_t channel,
 uint8_t next_link_id, uint8_t next_sn_address,
 uint8_t *packet_buffer_p, uint32_t length)

– required interface:

 status_t (*snDclMLInterface_funcp)(dcl_ml_com_t *obj_p, uint8_t priority,
 uint32_t length, uint8_t *packet_buffer_p)

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page 6-5 November 2021

4) ML Convergence Service of the convergence layer

– provided interface:

 status_t snDclMLInterface(dcl_ml_com_t *obj_p, uint8_t prority, uint32_t
length, uint8_t *packet_buffer_p)

 (See annex D for interface descriptions by SEDS.)

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page 7-1 November 2021

7 BENEFITS OF USING STANDARDIZED PROTOCOLS AND
SERVICES IN CAST SOFTWARE

7.1 BRIEF INTRODUCTION OF IMPLEMENTATION AND
EXPERIMENTATION

In order to validate the software architecture, CAST has implemented all the software
components in the architecture. Software components and device drivers have been designed
and developed. Based on the hardware platform of avionics system requirements, these
components were assembled and tested. An example of CCSDS standard primitive
implementation procedures and methods is given in annex A.

Case 1:

The software of hardware platform SDIU and SMU are assembled by software components,
which are completely the same, with the runtime parameters and process configured
according to the device identification. Task migration and system reconfiguration can be
achieved in a machine failure. The total code size of the prototype software is above 50000
lines, and the code size of all software components is above 40000 lines, accounting for 80%
of the total code lines.

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page 7-2 November 2021

Figure 7-1: Avionics System Hardware Platform and Test System 1

A number of test cases show that CAST FUHSI based on CCSDS standard can not only
provide richer, more practical, and more powerful functions than traditional spacecraft
software system, but also changes the whole software development mode, improving
efficiency and reliability of software development.

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page 7-3 November 2021

Case 2:

Inter-Satellite
Router 2711

To
Ethernet

Control Computer

SMU Test
Device

Inter-Satellite
Router Test Device

TTE Switch

Network
Simulator 1

Network
Simulator 2

Information Process
Test Device

TLK2711

TLK2711

TLK2711

TLK2711

TLK2711

TLK2711

TTETTE

TTE

Ethernet Router

Onboard
Device/ProductLVDS

IPvE
RouRing

SMU

Figure 7-2: Avionics System Hardware Platform and Test System 2

The System is composed of ground equipment and onboard equipment.

Ground equipment includes the Control Computer, Ethernet Router, SMU testing equipment
(corresponding to TT&C), Information Process testing equipment (corresponding to camera),
Inter-Satellite Router testing equipment (corresponding to Data Transmission Station), and
Network Simulator 1 (corresponding to Satellite) and 2 (corresponding to Satellite).

Onboard equipment includes SMU, TTE Switch, and Inter-Satellite Router, which is
equipped with TLK2711 interfaces. SMU is responsible for receiving TC frames and sending
AOS frames. TTE Switch is responsible for switching MAC frames quickly. Inter-Satellite
Router is responsible for connecting networks of intra-satellite and inter-satellite and
forwarding data between networks.

A number of test cases show that CAST FUHSI based on the CCSDS standard can not only
provide richer, more practical, and more powerful functions than traditional spacecraft
software system, but also changes the whole software development mode, improving
efficiency and reliability of software development.

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page 7-4 November 2021

7.2 SYSTEM FUNCTION ENHANCEMENT

System function enhancement mainly manifests in the following aspects:

a) The data transmission mechanism is more flexible.

 Traditional spacecraft use the serial data interface to transmit data. The transmission
time interval, data length, and transmission destination are all fixed and difficult to
change.

 Supported by the CCSDS SPP, SOIS Subnetwork Layer Packet Service, and
convergence layer in CAST FUHSI, the user of the system using the serial data
interface can control the transmission time interval, the data length of transmission,
and the destination on demand. Platform and payload devices can be accessed via any
serial data interface, either in raw data or in space packet format. When the data is in
raw data format, the system can configure the original data packet processing and
routing in advance. If the data is in a standard space packet format, the user can
choose the appropriate length, as well as different destinations, and then the system
can automatically identify the destination of the data and route data to its destination
according to the routing strategy, for example, routing through other onboard
equipment, other spacecraft, or ground assets. This mechanism can greatly improve
the flexibility and scalability of the system.

b) The software architecture supports the interface replacement without modifying
upper-layer application software.

 In some traditional spacecraft, the modification of the onboard software and
parameters cannot be avoided when the interface, through which the data is
transferred, will be changed.

 In CAST FUHSI, with the CCSDS SPP, SOIS Subnetwork Layer Packet Services and
convergence layer, the user can access the system through different interfaces. The
Transfer Layer service can automatically transfer data to the right destination
according to the user's destination. Even if the user changes the access interface, for
example, changing the serial data interface to 1553B bus interface, UART, or another
interface, it just needs to set the destination, and then the system can automatically
route according to the destination. This mechanism is equivalent to the plug-and-play
in initial stage. The device automatic identification mechanism, which will be
implemented and added to the architecture in the next step, can further enhance the
plug-and-play ability of system.

c) The software architecture supports the system computing capability to expand on
demand.

 In CAST FUHSI, the CCSDS MTS, DAS, DVS, DDPS are applied and cooperate
with the underlying SPP, the Subnetwork Layer Packet Service, and the convergence
layer. The number of processors can be flexibly expanded with the support from
underlying hardware. The system can increase the number of processor modules to
achieve the task migration and distributed computing, thus enhancing the overall

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page 7-5 November 2021

computing capability of the system. In this process, the data transmission between
different processors is completed by the MTS, and different services are adopted
according to the actual positions of the communication parties.

a) If the processes are in the same processor module, the MTS uses a local buffer to
complete the exchange of messages;

b) If the processes are distributed on two processors, the MTS completes the data
transmission through the Transfer Layer, the Subnetwork Layer Packet Service,
and the backplane bus convergence layer;

c) When the communication is between two devices connected by the 1553B bus,
the MTS performs data transmission via the Transfer Layer, the Subnetwork
Layer Packet Service, and the 1553B bus convergence layer.

 The difference of underlying links can be completely shielded to the Application
Layer, so as to facilitate the development of applications independent of the
underlying interfaces.

d) Standard uplink and downlink transmission of large data blocks are supported.

 The CCSDS TC protocol, AOS protocol, COP-1 protocol, SPP, Subnetwork Layer
Packet Service, and convergence layer are applied in CAST FUHSI, which provides a
standardized transmission mechanism for ground users. The user can put a one-time
injection of data consisting of maximum 64K bytes packets by TC protocol for
automatic segmentation, and in accordance with the COP-1 protocol, to transmit the
frames and confirm the results automatically. This procedure can provide a friendly
interface to users and can greatly enhance efficiency. Two disadvantages can then be
avoided: (a) the need to segment large data packets into multiple small packets and
calculate the address one by one, troublesomely; (b) the low transmission efficiency
caused by waiting for the confirmation of the previous frame before the user sending
the next frame.

e) Space and onboard communications are integrated via transfer layer.

 The use of transfer layer, space, and onboard communications can be integrated
through network protocols such as SPP, UDP, and IPv6. The data sent by ground to a
device onboard a spacecraft via different spacecraft can be routed via the transfer
layer in each spacecraft without submitting to the upper layer, thus increasing
efficiency. While there are several onboard subnetworks inside a single spacecraft,
data routing among different subnetworks can also be implemented in the transfer
layer.

f) Services are combined to achieve system functionality.

 The various functions of CAST FUHSI can be achieved through a combination of a
variety of services. For example, telemetry acquisition in telemetry can apply DDPS
in the Application Support Layer to access the device data via DAS or DVS, SPP,
Subnetwork Layer Packet Services, or Subnetwork Layer Memory Access Services.

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page 7-6 November 2021

Telemetry organization can generate telemetry packets using the PUS Housekeeping
& Diagnostic Parameter Reporting Service in the Application Support Layer. AOS
protocol can be used to complete the frame organization and virtual channel
scheduling and download the telemetry data to the ground via hardware device/link.
These basic services will greatly facilitate the development of various functions of the
system, and other subsequent intelligent functions can be developed based on the
above basic services, thus reducing the development workload of the user.

7.3 THE CHANGE OF SOFTWARE DEVELOPMENT MODEL

CAST FUHSI offers the standard services in a layered structure, building a comprehensive
avionics system software framework and basic service platform. Under the support of
standard services, protocols, and interfaces, the software can be used in most spacecraft, and
can be used for future intelligent and internetworking applications. A large number of
repetitions in the design, implementation, and testing can be avoided by applying the
architecture, which can effectively reduce the cost and risk of a space mission.

Because a large number of CCSDS standards have been adopted and implemented as
software components, the whole software development mode of the flight software will be
fundamentally changed to the assembly model based on software architecture and
components. The efficiency of software development and the reliability of software will be
improved remarkably in the following several aspects:

a) Software requirement analysis phase

 The main work is to select the desired services and protocols from the service and
protocol architecture according to the special needs of different spacecraft in the
selection of bus, protocol, service, and hardware configuration. Then the parameters
are configured according to the requirement, and the mission-specific services and
protocols are proposed for the spacecraft when necessary.

 Thanks to the use of the CCSDS standard services and protocols, definition activities
can be reduced, making the software requirement analysis of the spacecraft more
focused on the mission-specific requirements.

b) Software design phase

 In this phase, the main work task is the selection of services and protocols as well as
their software components in the software architecture, based on the requirement
analysis. The components will be tailored, and the special components associated
with the application of the task should be designed with the interfaces by which they
can be connected to the common software components.

 For the spacecraft flight software based on this software architecture, in the process
of software design and development as well as software use, the main work changes
from software programming to design and configuration of parameters in the
standards and services. Each CCSDS service contains a large number of descriptive
parameters for the properties and running rules. According to the functional

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page 7-7 November 2021

requirements, the flight software, hardware environment, as well as the attributes and
requirements of devices and its users, the user may make the installation and
configuration of software components and the initialization parameters by the rules of
unified naming rules in the global setting. If using the assembly and simulation
software component verification tool, the system information flow and performance
can be simulated; this may help to modify the component’s configuration and
connection.

 Supported by the standardized software architecture, users can focus on standard
software component configuration and assembly, with no need for repetitive software
design. Through layered structure and repeated use of the standard services and
protocols, complexity of the verification can be reduced, and the reliability can be
improved continuously.

c) Software implementation phase

 Because most requirements can be satisfied by a combination of standard CCSDS
services and protocols that have already been implemented by software components,
only a small amount of software components related to special requirements need to
be developed while existing software components can be reused.

d) Software testing phase

 Unit test of some inherited components can be skipped, and some service test cases
can be reused. The tester only needs to design the new cases for the software
components’ corresponding special requirements of spacecraft. Hence, the test
workload can be greatly reduced.

e) Software maintenance phase

 Because of the standard services and protocols in the hierarchical structure, the
changing, replacing, or modification of some services or functions will not affect
other layers, which is convenient for the upgrade and maintenance of flight software.

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page 7-8 November 2021

7.4 CONCLUSION

CAST FUHSI based on the CCSDS standard greatly enhances its function compared with the
traditional spacecraft software system and obviously improves standardization, flexibility,
expansibility, and reliability.

a) Standardization: The hardware and software functions of each layer are defined by a
set of standard services. The definition of services uses CCSDS standards, thereby
reducing the demand for the definition activities and achieving the reuse of devices
and software as well as transplantation and interoperability. It can meet future
application requirements as well as facilitate exchanges and cooperation.

b) Flexibility: As a layered protocol and software architecture, the system offers more
flexibility for the information transfer mechanism to support the device transmit data
through any interface accessing the system, and also supports users in sending
information on demand.

c) Scalability: Through the component interface design, the interface can be replaced
and expanded. For example, when the device access interface of 1553B bus is
replaced by a serial port, the original 1553B bus convergence component can be
replaced with a serial convergence component, and the software interface of the
Subnetwork Layer Packet Service can be kept unchanged.

d) Reliability: On one hand, through the joint design of hardware and software,
hardware can support interface redirection, and software can achieve task migration
and system reconfiguration to enhance the overall reliability of the system. On the
other hand, through layering, as well as testing and reusing of the standard services
and protocols, the complexity of system verification can be reduced, and the
reliability can be continually improved.

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page A-1 November 2021

ANNEX A

PROCESS AND METHOD EXAMPLES FOR IMPLEMENTING CCSDS
STANDARD PRIMITIVES

(INFORMATIVE)

In the CCSDS standard, the external interfaces are mainly described by primitives. The
specific implementation processes of the primitives are not described in the CCSDS standard.
This architecture uses a number of CCSDS standards. The implementation of the primitives
and the way of providing the outside interface is given in detail.

A dynamic data flow analysis method is used in the actual design process. It can not only
represent the static processing relation in the conventional data flow diagram, but can also
represent the dynamic execution and interaction process, which can be verified by the design
of test cases in the requirement phase.

The rules of the data flow diagram are as follows:

a) Its data processing, data storage, data flow, and data representation are consistent
with the conventional data flow diagram.

b) Several thick line arrows with step numbers 1, 2, 3, etc., are added in the diagram to
represent the execution steps.

c) Address identifiers for the step execution are added in the diagram. S represents that
it is executed in the source end; D represents that it is executed in the destination end.

d) In the description of the data flow diagram, its foreground processes are described
according to steps for each of the primitives, and its background processes are
described if necessary.

e) It is described according to the order of input, processing and output for each process
in the data flow diagram.

Taking the SPP in Transfer Layer as an example, the specific implementation process of the
method is given.

According to CCSDS SPP, the external interface requirements of the protocol include:

a) PACKET.request: the upper layer requests to send a space packet to the destination
via the Transfer Layer.

b) PACKET.indication: the Transfer Layer delivers a space packet to the upper layer.

In view of the above requirements, the implementation process of the PACKET.request
primitive can be drawn as shown in figure A-1.

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page A-2 November 2021

Space
packet send
interface

PACKET. Request

Space packet

Space
packet

PACKET.Indication

Data units
selected

Output packet queue
（*）

Data units
to send

Space
packet
receive

interface

Subnetwork
packet send

（Packet_send.
request）

Packet
output

Space packet,
Subnetwork Packet
Service parameters

Execution
results send
（Packet.

indication）

Space packet

Space packet
routing
process

Routing
table

Routing information

Space packet
routing

information

Subnetwork Layer PDUSubnetwork Layer PDU

Transport
layer

Startup
periodically

Number of
received packets

Space packet
routing

background
task

Space
packet

Idle
packet

Management
information table

（*）

(4S)

(1S)

(2S)

(3S)

Figure A-1: Implementation Process of PACKET.request Primitive

(1S), (2S), and (3S) are the steps in which the user sends a space packet to the bottom layer
with the PACKET.request primitive. The steps are described as follows (for space
considerations, some algorithms, parameters, and details of the process are omitted here):

The foreground execution processes of the source end are as follows:

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page A-3 November 2021

(1S) The space packet sending interface accepts the upper user’s call, and then sends the
packet to the space packet routing process.

(2S) The space packet routing process queries the routing table to get the routing
information. The space packet and routing information are sent to the packet output process.

(3S) Packet output calls the underlying Subnetwork Layer Packet Service primitives to send
data.

The background execution processes of the source end are as follows:

(4S) The space packet routing background task periodically takes out data units from the
queue, and sends them to packet output.

PACKET.indication primitive is the execution process of the destination end. It can also be
described in a similar way, which is not repeated here. According to the above analysis
process, one can get the specific implementation process of the PACKET.request primitive,
and one can also get the implementation process of the PACKET.indication primitive in a
similar way.

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page B-1 November 2021

ANNEX B

ABBREVIATIONS AND ACRONYMS

(INFORMATIVE)

AMS Asynchronous Message Service

API application programming interface

APID Application Process Identifier

AN analogue

BSP board support package

CAST China Academy of Space Technology

CCSDS Consultative Committee for Space Data Systems

CFDP CCSDS File Delivery Protocol

CPU central processor unit

DACP Device Abstraction Control Procedure

DAP Device-specific Access Protocol

DAS Device Access Service

DDPS Device Data Pooling Service

DES Device Enumeration Service

DVS Device Virtualization Service

DS digital serial

ECSS European Cooperation for Space Standardization

EDS Electronic Data Sheet

FUHSI Flexible and Unified Flight Software Architecture

IETF Internet Engineering Task Force

MAPP Multiplexer Access Point Packet

MAS Memory Access Service

MASAP Memory Access Service Access Point

MIB management information base

ML memory load

MTS Message Transfer Service

OBDH onboard data handling

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page B-2 November 2021

OSI Open Systems Interconnection

PDU protocol data unit

PUS Packet Utilization Standard

PS Packet Service

PSSAP Packet Source Service Access Point

PDSAP Packet Destination Service Access Point

QoS quality of service

RAM random-access memory

ROM read-only memory

RT remote terminal

SAP service access point

SCPS-TP Space Communications Protocol Standards Transport Protocol

SEDS SOIS EDS

SIS Space Internetworking Service

SLS Space Link Service

SDIU Spacecraft Data Interface Unit

SDU service data unit

SMU Spacecraft Management Unit

SOIS Spacecraft Onboard Interface Services

SYNC Synchronisation Service

TAS Time Access Service

TC telecommand

TCP Transmission Control Protocol

TM telemetry

TTE time triggered Ethernet

UART Universal Asynchronous Receiver/Transmitter

UDP User Datagram Protocol

USLP Unified Space Link Protocol

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page C-1 November 2021

ANNEX C

DESCRIPTION OF THE PARAMETERS BY SEDS

(INFORMATIVE)

<?xml version="1.0" encoding="UTF-8"?>
<DataSheet xmlns="http://www.ccsds.org/schema/sois/seds" xmlns:xi="http://www.w3.org/2001/XInclude"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
xsi:schemaLocation="http://www.ccsds.org/schema/sois/seds seds.xsd">
 <!-- Include the CCSDS SOIS Subnetwork Service definitions -->
 <!-- Note that the XPointer scheme used here (element) is quite restrictive, but it parses properly with the tools
I am using (XMLSpy). It should also parse OK with most other tools (I know it works with JAXB). -->
 <xi:include href="ccsds.sois.subnetwork.xml" xpointer="element(/1/1)"/>
 <!-- All the types that are necessary for this device are in a specific namespace to help separate things -->
 <Namespace name="DemoML">
 <!-- This is the set of all parameter types which are used in the public interfaces to the component types
described in this namespace -->
 <DataTypeSet>
 <!-- data types from here on -->
 <BooleanDataType name="bool"/>
 <IntegerDataType name="uint8_t">
 <Range>
 <MinMaxRange min="0" max="255" rangeType="inclusiveMinInclusiveMax"/>
 </Range>
 </IntegerDataType>
 <IntegerDataType name="uint16_t">
 <Range>
 <MinMaxRange min="0" max="65535" rangeType="inclusiveMinInclusiveMax"/>
 </Range>
 </IntegerDataType>
 <IntegerDataType name="uint32_t">
 <Range>
 <MinMaxRange min="0" max="4294967295" rangeType="inclusiveMinInclusiveMax"/>
 </Range>
 </IntegerDataType>
 <IntegerDataType name="uint8_t*">
 <LongDescription>it is a address whose length is 32 bit</LongDescription>
 <Range>
 <MinMaxRange min="0" max="4294967295" rangeType="inclusiveMinInclusiveMax"/>
 </Range>
 </IntegerDataType>
 <IntegerDataType name="dcl_ml_com_t *">
 <LongDescription>it is a address point</LongDescription>
 <Range>
 <MinMaxRange min="0" max="4294967295" rangeType="inclusiveMinInclusiveMax"/>
 </Range>
 </IntegerDataType>
 <ContainerDataType name="device_access_type_table_1">
 <EntryList>
 <FixedValueEntry fixedValue="8" name="device_id" type="uint16_t"/>
 <FixedValueEntry fixedValue="24" name="cor_dap" type="uint16_t"/>
 </EntryList>

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page C-2 November 2021

 </ContainerDataType>
 <ContainerDataType name="device_access_type_table_2">
 <EntryList>
 <FixedValueEntry fixedValue="9" name="device_id" type="uint16_t"/>
 <FixedValueEntry fixedValue="24" name="cor_dap" type="uint16_t"/>
 </EntryList>
 </ContainerDataType>

 <ContainerDataType name="device_value_table">
 <EntryList>
 <FixedValueEntry fixedValue="8" name="device_id" type="uint16_t"/>
 <FixedValueEntry fixedValue="0" name="value_id" type="uint16_t"/>
 <FixedValueEntry fixedValue="7" name="net_addr" type="uint16_t"/>
 <FixedValueEntry fixedValue="0" name="start_addr" type="uint32_t"/>
 <FixedValueEntry fixedValue="1000" name="dv_length" type="uint16_t"/>
 </EntryList>
 </ContainerDataType>

 <ContainerDataType name="routing_table_1">
 <EntryList>
 <FixedValueEntry fixedValue="0x420" name="net_addr" type="uint16_t"/>
 <FixedValueEntry fixedValue="0x7e0" name="ro_mask" type="uint16_t"/>
 <FixedValueEntry fixedValue="0" name="next_subnet_id" type="uint16_t"/>
 <FixedValueEntry fixedValue="0" name="next_subnet_addr" type="uint16_t"/>
 <FixedValueEntry fixedValue="0" name="ass_parameter" type="uint32_t"/>
 </EntryList>
 </ContainerDataType>
 <ContainerDataType name="routing_table_2">
 <EntryList>
 <FixedValueEntry fixedValue="0x8" name="net_addr" type="uint16_t"/>
 <FixedValueEntry fixedValue="0x7ff" name="ro_mask" type="uint16_t"/>
 <FixedValueEntry fixedValue="6" name="next_subnet_id" type="uint16_t"/>
 <FixedValueEntry fixedValue="0" name="next_subne_addr" type="uint16_t"/>
 <FixedValueEntry fixedValue="0" name="ass_parameter" type="uint32_t"/>
 </EntryList>
 </ContainerDataType>

 <ContainerDataType name="ml_link_table_1">
 <EntryList>
 <FixedValueEntry fixedValue="6" Entry name="link_id" type="uint16_t"/>
 <FixedValueEntry fixedValue="0" Entry name="link_type" type="uint16_t"/>
 <FixedValueEntry fixedValue="3" Entry name="driver_master" type="uint32_t"/>
 <FixedValueEntry fixedValue="1" Entry name="driver_slave" type="uint32_t"/>
 </EntryList>
 </ContainerDataType>

 <ContainerDataType name="ml_link_table_2">
 <EntryList>
 <FixedValueEntry fixedValue="7" Entry name="link_id" type="uint16_t"/>
 <FixedValueEntry fixedValue="0" Entry name="link_type" type="uint16_t"/>
 <FixedValueEntry fixedValue="3" Entry name="driver_master" type="uint32_t"/>
 <FixedValueEntry fixedValue="2" Entry name="driver_slave" type="uint32_t"/>
 </EntryList>
 </ContainerDataType>

 </Namespace>
</DataSheet>

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page D-1 November 2021

ANNEX D

DESCRIPTION OF THE INTERFACES BY SEDS

(INFORMATIVE)

 <!-- This is the set of all interface types used by component types in this namespace -->
 <DeclaredInterfaceSet>
 <Interface name="tpPacketSend_funcp">
 <ParameterSet>
 <Parameter name="src_apid" readOnly="true" type="uint16_t" mode="async" />
 <Parameter name="dest_apid" readOnly="true" type="uint16_t" mode="async" />
 <Parameter name="packet_buffer_p" readOnly="true" type="uint8_t*"
mode="async" />
 <Parameter name="length" readOnly="true" type="uint32_t" mode="async" />
 <Parameter name="qos" readOnly="true" type="uint32_t" mode="async" />
 </ParameterSet>
 </Interface>
 </DeclaredInterfaceSet>
 <DeclaredInterfaceSet>
 <Interface name="tpPacketSend">
 <ParameterSet>
 <Parameter name="src_apid" readOnly="true" type="uint16_t" mode="async" />
 <Parameter name="dest_apid" readOnly="true" type="uint16_t" mode="async" />
 <Parameter name="packet_buffer_p" readOnly="true" type="uint8_t*"
mode="async" />
 <Parameter name="length" readOnly="true" type="uint32_t" mode="async" />
 <Parameter name="qos" readOnly="true" type="uint32_t" mode="async" />
 </ParameterSet>
 </Interface>
 </DeclaredInterfaceSet>
 <DeclaredInterfaceSet>
 <Interface name="snPsSend_funcp">
 <ParameterSet>
 <Parameter name="qos" readOnly="true" type="uint8_t" mode="async" />
 <Parameter name="priority" readOnly="true" type="uint8_t" mode="async" />
 <Parameter name="channel" readOnly="true" type="uint8_t" mode="async" />
 <Parameter name="next_link_id" readOnly="true" type="uint8_t" mode="async" />
 <Parameter name="next_sn_address" readOnly="true" type="uint8_t"
mode="async" />
 <Parameter name="packet_buffer_p" readOnly="true" type="uint8_t*"
mode="async" />
 <Parameter name="length" readOnly="true" type="uint32_t" mode="async" />
 </ParameterSet>
 </Interface>
 </DeclaredInterfaceSet>
 <DeclaredInterfaceSet>
 <Interface name="snPsSend">
 <ParameterSet>
 <Parameter name="qos" readOnly="true" type="uint8_t" mode="async" />
 <Parameter name="priority" readOnly="true" type="uint8_t" mode="async" />
 <Parameter name="channel" readOnly="true" type="uint8_t" mode="async" />

CCSDS EXPERIMENTAL SPECIFICATION: CAST FLIGHT SOFTWARE AS A CCSDS
ONBOARD REFERENCE ARCHITECTURE

CCSDS 811.1-O-1 Page D-2 November 2021

 <Parameter name="next_link_id" readOnly="true" type="uint8_t" mode="async" />
 <Parameter name="next_sn_address" readOnly="true" type="uint8_t"
mode="async" />
 <Parameter name="packet_buffer_p" readOnly="true" type="uint8_t*"
mode="async" />
 <Parameter name="length" readOnly="true" type="uint32_t" mode="async" />
 </ParameterSet>
 </Interface>
 </DeclaredInterfaceSet>
 <DeclaredInterfaceSet>
 <Interface name="snDclMLInterface_funcp">
 <ParameterSet>
 <Parameter name="obj_p" readOnly="true" type="dcl_ml_com_t*" mode="async"
/>
 <Parameter name="priority" readOnly="true" type="uint8_t" mode="async" />
 <Parameter name="length" readOnly="true" type="uint32_t" mode="async" />
 <Parameter name="packet_buffer_p" readOnly="true" type="uint8_t*"
mode="async" />
 </ParameterSet>
 </Interface>
 </DeclaredInterfaceSet>
 <DeclaredInterfaceSet>
 <Interface name=" snDclMLInterface">
 <ParameterSet>
 <Parameter name="obj_p" readOnly="true" type="dcl_ml_com_t*" mode="async"
/>
 <Parameter name="priority" readOnly="true" type="uint8_t" mode="async" />
 <Parameter name="length" readOnly="true" type="uint32_t" mode="async" />
 <Parameter name="packet_buffer_p" readOnly="true" type="uint8_t*"
mode="async" />
 </ParameterSet>
 </Interface>
 </DeclaredInterfaceSet>

	AUTHORITY
	FOREWORD
	PREFACE
	DOCUMENT CONTROL
	CONTENTS
	1 INTRODUCTION
	1.1 PURPOSE
	1.2 SCOPE
	1.3 DEFINITIONS AND CONVENTIONS
	1.4 DOCUMENT STRUCTURE
	1.5 REFERENCES

	2 OVERVIEW OF CAST FLIGHT SOFTWARE ARCHITECTURE
	2.1 BACKGROUND
	2.2 SOFTWARE ARCHITECTURE
	2.3 INTERFACES

	3 INFUSION OF SERVICES AND PROTOCOLS STANDARDS INTO CAST SOFTWARE ARCHITECTURE
	3.1 GENERAL
	3.2 SERVICE AND PROTOCOL ARCHITECTURE
	3.3 RELATIONSHIP BETWEEN SOIS AND OTHER STANDARDS

	4 RELATIONSHIP BETWEEN SOIS SERVICES
	4.1 GENERAL
	4.2 NAMING MECHANISM
	4.3 MAJOR SERVICES RELATIONSHIP AND ADDRESSING MECHANISM

	5 RELATIONSHIP BETWEEN SOIS SERVICES AND DEVICE HARDWARE
	5.1 GENERAL
	5.2 DEVICE TYPES ANALYSIS IN CAST AVIONICS SYSTEM
	5.3 HARDWARE NODES ACCESS METHODS IN AVIONICS SYSTEM

	6 APPLICATION OF SEDS
	6.1 GENERAL
	6.2 AN APPLICATION EXAMPLE

	7 BENEFITS OF USING STANDARDIZED PROTOCOLS AND SERVICES IN CAST SOFTWARE
	7.1 BRIEF INTRODUCTION OF IMPLEMENTATION AND EXPERIMENTATION
	7.2 SYSTEM FUNCTION ENHANCEMENT
	7.3 THE CHANGE OF SOFTWARE DEVELOPMENT MODEL
	7.4 CONCLUSION

	ANNEX A PROCESS AND METHOD EXAMPLES FOR IMPLEMENTING CCSDS STANDARD PRIMITIVES (INFORMATIVE)
	ANNEX B ABBREVIATIONS AND ACRONYMS (INFORMATIVE)
	ANNEX C DESCRIPTION OF THE PARAMETERS BY SEDS (INFORMATIVE)
	ANNEX D DESCRIPTION OF THE INTERFACES BY SEDS (INFORMATIVE)

