
Recommendation for Space Data System Standards

CROSS SUPPORT
TRANSFER SERVICE—

SPECIFICATION
FRAMEWORK

RECOMMENDED STANDARD

CCSDS 921.1-B-2

BLUE BOOK
February 2021

Recommendation for Space Data System Standards

CROSS SUPPORT
TRANSFER SERVICE—

SPECIFICATION
FRAMEWORK

RECOMMENDED STANDARD

CCSDS 921.1-B-2

BLUE BOOK
February 2021

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page i February 2021

AUTHORITY

 Issue: Recommended Standard, Issue 2
 Date: February 2021
 Location: Washington, DC, USA

This document has been approved for publication by the Management Council of the
Consultative Committee for Space Data Systems (CCSDS) and represents the consensus
technical agreement of the participating CCSDS Member Agencies. The procedure for
review and authorization of CCSDS documents is detailed in Organization and Processes for
the Consultative Committee for Space Data Systems (CCSDS A02.1-Y-4), and the record of
Agency participation in the authorization of this document can be obtained from the CCSDS
Secretariat at the e-mail address below.

This document is published and maintained by:

CCSDS Secretariat
National Aeronautics and Space Administration
Washington, DC, USA
Email: secretariat@mailman.ccsds.org

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page ii February 2021

STATEMENT OF INTENT

The Consultative Committee for Space Data Systems (CCSDS) is an organization officially
established by the management of its members. The Committee meets periodically to address
data systems problems that are common to all participants, and to formulate sound technical
solutions to these problems. Inasmuch as participation in the CCSDS is completely
voluntary, the results of Committee actions are termed Recommended Standards and are
not considered binding on any Agency.

This Recommended Standard is issued by, and represents the consensus of, the CCSDS
members. Endorsement of this Recommendation is entirely voluntary. Endorsement,
however, indicates the following understandings:

o Whenever a member establishes a CCSDS-related standard, this standard will be in
accord with the relevant Recommended Standard. Establishing such a standard
does not preclude other provisions which a member may develop.

o Whenever a member establishes a CCSDS-related standard, that member will
provide other CCSDS members with the following information:

 -- The standard itself.

 -- The anticipated date of initial operational capability.

 -- The anticipated duration of operational service.

o Specific service arrangements shall be made via memoranda of agreement. Neither
this Recommended Standard nor any ensuing standard is a substitute for a
memorandum of agreement.

No later than five years from its date of issuance, this Recommended Standard will be
reviewed by the CCSDS to determine whether it should: (1) remain in effect without change;
(2) be changed to reflect the impact of new technologies, new requirements, or new
directions; or (3) be retired or canceled.

In those instances when a new version of a Recommended Standard is issued, existing
CCSDS-related member standards and implementations are not negated or deemed to be
non-CCSDS compatible. It is the responsibility of each member to determine when such
standards or implementations are to be modified. Each member is, however, strongly
encouraged to direct planning for its new standards and implementations towards the later
version of the Recommended Standard.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page iii February 2021

FOREWORD

Through the process of normal evolution, it is expected that expansion, deletion, or
modification of this document may occur. This Recommended Standard is therefore subject
to CCSDS document management and change control procedures, which are defined in the
Organization and Processes for the Consultative Committee for Space Data Systems
(CCSDS A02.1-Y-4). Current versions of CCSDS documents are maintained at the CCSDS
Web site:

http://www.ccsds.org/

Questions relating to the contents or status of this document should be sent to the CCSDS
Secretariat at the email address indicated on page i.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page iv February 2021

At time of publication, the active Member and Observer Agencies of the CCSDS were:

Member Agencies
– Agenzia Spaziale Italiana (ASI)/Italy.
– Canadian Space Agency (CSA)/Canada.
– Centre National d’Etudes Spatiales (CNES)/France.
– China National Space Administration (CNSA)/People’s Republic of China.
– Deutsches Zentrum für Luft- und Raumfahrt (DLR)/Germany.
– European Space Agency (ESA)/Europe.
– Federal Space Agency (FSA)/Russian Federation.
– Instituto Nacional de Pesquisas Espaciais (INPE)/Brazil.
– Japan Aerospace Exploration Agency (JAXA)/Japan.
– National Aeronautics and Space Administration (NASA)/USA.
– UK Space Agency/United Kingdom.

Observer Agencies
– Austrian Space Agency (ASA)/Austria.
– Belgian Science Policy Office (BELSPO)/Belgium.
– Central Research Institute of Machine Building (TsNIIMash)/Russian Federation.
– China Satellite Launch and Tracking Control General, Beijing Institute of Tracking and

Telecommunications Technology (CLTC/BITTT)/China.
– Chinese Academy of Sciences (CAS)/China.
– China Academy of Space Technology (CAST)/China.
– Commonwealth Scientific and Industrial Research Organization (CSIRO)/Australia.
– Danish National Space Center (DNSC)/Denmark.
– Departamento de Ciência e Tecnologia Aeroespacial (DCTA)/Brazil.
– Electronics and Telecommunications Research Institute (ETRI)/Korea.
– European Organization for the Exploitation of Meteorological Satellites (EUMETSAT)/Europe.
– European Telecommunications Satellite Organization (EUTELSAT)/Europe.
– Geo-Informatics and Space Technology Development Agency (GISTDA)/Thailand.
– Hellenic National Space Committee (HNSC)/Greece.
– Hellenic Space Agency (HSA)/Greece.
– Indian Space Research Organization (ISRO)/India.
– Institute of Space Research (IKI)/Russian Federation.
– Korea Aerospace Research Institute (KARI)/Korea.
– Ministry of Communications (MOC)/Israel.
– Mohammed Bin Rashid Space Centre (MBRSC)/United Arab Emirates.
– National Institute of Information and Communications Technology (NICT)/Japan.
– National Oceanic and Atmospheric Administration (NOAA)/USA.
– National Space Agency of the Republic of Kazakhstan (NSARK)/Kazakhstan.
– National Space Organization (NSPO)/Chinese Taipei.
– Naval Center for Space Technology (NCST)/USA.
– Netherlands Space Office (NSO)/The Netherlands.
– Research Institute for Particle & Nuclear Physics (KFKI)/Hungary.
– Scientific and Technological Research Council of Turkey (TUBITAK)/Turkey.
– South African National Space Agency (SANSA)/Republic of South Africa.
– Space and Upper Atmosphere Research Commission (SUPARCO)/Pakistan.
– Swedish Space Corporation (SSC)/Sweden.
– Swiss Space Office (SSO)/Switzerland.
– United States Geological Survey (USGS)/USA.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page v February 2021

DOCUMENT CONTROL

Document Title Date Status

CCSDS
921.1-B-1

Cross Support Transfer Service—
Specification Framework,
Recommended Standard, Issue 1

April 2017 Original issue,
superseded

CCSDS
921.1-B-2

Cross Support Transfer Service—
Specification Framework,
Recommended Standard, Issue 2

February
2021

Current issue

EC 1 Editorial Correction 1 February
2024

Corrects annex M page
numbering.

NOTE – Changes from the original issue are too numerous to permit meaningful markup.

February 2024

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page vi February 2021

CONTENTS

Section Page

1 INTRODUCTION .. 1-1

1.1 PURPOSE ... 1-1
1.2 SCOPE .. 1-1
1.3 APPLICABILITY ... 1-1
1.4 RATIONALE .. 1-2
1.5 DOCUMENT STRUCTURE ... 1-2
1.6 DEFINITIONS .. 1-6
1.7 REFERENCES ... 1-20

2 DESCRIPTION OF CROSS SUPPORT SERVICES .. 2-1

2.1 OVERVIEW ... 2-1
2.2 CROSS SUPPORT REFERENCE MODEL .. 2-3
2.3 SERVICE MANAGEMENT .. 2-4
2.4 ELEMENTS OF THE CSTS SPECIFICATION FRAMEWORK 2-5
2.5 PRINCIPLES OF USING THE CSTS SPECIFICATION FRAMEWORK 2-9
2.6 PROTOCOL DESCRIPTION .. 2-12

3 COMMON OPERATIONS ... 3-1

3.1 OVERVIEW ... 3-1
3.2 GENERAL CONSIDERATIONS .. 3-1
3.3 STANDARD OPERATION HEADER .. 3-6
3.4 BIND (CONFIRMED) ... 3-10
3.5 UNBIND (CONFIRMED) .. 3-15
3.6 PEER-ABORT (UNCONFIRMED) ... 3-16
3.7 START (CONFIRMED) ... 3-20
3.8 STOP (CONFIRMED) ... 3-21
3.9 TRANSFER-DATA (UNCONFIRMED) ... 3-22
3.10 PROCESS-DATA (UNCONFIRMED / CONFIRMED) 3-24
3.11 NOTIFY (UNCONFIRMED) ... 3-26
3.12 GET (CONFIRMED) ... 3-29
3.13 EXECUTE-DIRECTIVE (ACKNOWLEDGED) .. 3-34

4 PROCEDURES .. 4-1

4.1 OVERVIEW ... 4-1
4.2 COMMON PROCEDURES BEHAVIOR ... 4-1
4.3 ASSOCIATION CONTROL .. 4-4
4.4 UNBUFFERED DATA DELIVERY ... 4-11

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page vii February 2021

CONTENTS (continued)

Section Page

4.5 BUFFERED DATA DELIVERY ... 4-16
4.6 DATA PROCESSING .. 4-47
4.7 BUFFERED DATA PROCESSING... 4-65
4.8 SEQUENCE-CONTROLLED DATA PROCESSING .. 4-78
4.9 INFORMATION QUERY .. 4-96
4.10 CYCLIC REPORT ... 4-100
4.11 NOTIFICATION .. 4-112
4.12 THROW EVENT .. 4-123

ANNEX A IMPLEMENTATION CONFORMANCE STATEMENT

PROFORMA (NORMATIVE) ... A-1
ANNEX B PRODUCTION STATUS AND CONFIGURATION

(NORMATIVE) ..B-1
ANNEX C QUALIFIED PARAMETERS (NORMATIVE) ... C-1
ANNEX D OBJECT IDENTIFIERS DEFINITION (NORMATIVE) D-1
ANNEX E COMPOSITION OF PARAMETER, EVENT, AND

DIRECTIVE NAMES AND PARAMETER AND EVENT
LISTS (NORMATIVE) ..E-1

ANNEX F DATA TYPES DEFINITION (NORMATIVE) ... F-1
ANNEX G SERVICE STATE TABLES (NORMATIVE) .. G-1
ANNEX H SECURITY, SANA, AND PATENT CONSIDERATIONS

(INFORMATIVE) ... H-1
ANNEX I INFORMATIVE REFERENCES (INFORMATIVE) I-1
ANNEX J ABBREVIATIONS (INFORMATIVE) .. J-1
ANNEX K OBJECT IDENTIFIERS (INFORMATIVE) ... K-1
ANNEX L PUBLISHED IDENTIFIERS FOR FUNCTIONAL

RESOURCES REGISTERED UNDER THE
CROSSSUPPORTFUNCTIONALITIES NODE (INFORMATIVE)L-1

ANNEX M ASN.1 CONSTRUCTION OF QUALIFIED PARAMETERS
(INFORMATIVE) .. M-1

Figure

1-1 Cross Support Service Documentation ... 1-4
2-1 CSTS Specification Framework Concept ... 2-2
2-2 Service and Procedure States (Stateful Prime Procedure) .. 2-13
2-3 Service and Procedure States (Stateless Prime Procedure) .. 2-14
2-4 Communications Realization of a Cross Support Transfer Service 2-17
4-1 Services Using a Buffered Data Delivery Procedure ... 4-19

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page viii February 2021

CONTENTS (continued)

Figure Page

4-2 Real-Time and Complete Buffered Data Delivery Service Instances
and Supporting Buffering Mechanisms .. 4-20

B-1 Production Status Diagram ...B-1
D-1 CSTS and Cross Support Resources Root Object Identifier Tree D-2
D-2 ‘procedures’ Subtree .. D-5
D-3 ‘fwProceduresFunctionalities’ Subtree .. D-7
D-4 ‘services’ Subtree ... D-8
D-5 ‘service procedures’ Subtree .. D-9
D-6 ‘crossSupportFunctionalities’ Subtree ... D-11
D-7 ‘agenciesFunctionalities’ Subtree .. D-13
K-1 Cross Support Services Part of the CCSDS Object Identifiers Tree K-1
K-2 CSS Object Identifiers Tree ... K-1
K-3 CSTS Object Identifiers Tree .. K-2
K-4 CSTS Specification Framework Object Identifiers Tree ... K-3
K-5 CSTS Services Object Identifiers Tree .. K-4
K-6 CSTS Published Identifiers—Object Identifiers Tree ... K-6
L-1 Example Cross Support Functional Resources ... L-2
L-2 Subcarrier Related Parameters of the Rtn401SpaceLinkCarrierRecpt

Functional Resource ... L-3

Table

2-1 Common Operations Defined by the CSTS Specification Framework 2-6
2-2 Common Procedures Defined by the CSTS Specification Framework 2-8
2-3 Use of Operations by Common Procedures .. 2-9
3-1 Standard Confirmed Operation Header Parameters ... 3-7
3-2 Standard Unconfirmed Operation Header Parameters ... 3-7
3-3 BIND Operation Parameters ... 3-11
3-4 UNBIND Operation Parameters ... 3-15
3-5 PEER-ABORT Operation Parameters .. 3-16
3-6 START Operation Parameters .. 3-20
3-7 STOP Operation Parameters ... 3-22
3-8 TRANSFER-DATA Operation Parameters .. 3-23
3-9 PROCESS-DATA Operation Parameters ... 3-25
3-10 NOTIFY Operation Parameters .. 3-27
3-11 GET Operation Parameters ... 3-31
3-12 EXECUTE-DIRECTIVE Operation Parameters .. 3-35
4-1 Association Control Procedure Required Operations ... 4-8
4-2 Association Control Procedure Configuration Parameters ... 4-8
4-3 Association Control Procedure State Table .. 4-9

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page ix February 2021

CONTENTS (continued)

Table Page

4-4 Procedure State Table Incoming Event Description References 4-10
4-5 Procedure State Table Predicate Descriptions .. 4-10
4-6 Procedure State Table Simple Action References .. 4-10
4-7 Procedure State Table Compound Action Definitions ... 4-10
4-8 Unbuffered Data Delivery Procedure Required Operations 4-13
4-9 Unbuffered Data Delivery Procedure State Table .. 4-14
4-10 Procedure State Table Incoming Event Description References 4-14
4-11 Procedure State Table Predicate Descriptions .. 4-15
4-12 Procedure State Table Boolean Flags ... 4-15
4-13 Procedure State Table Simple Action References .. 4-15
4-14 Buffered Data Delivery Procedure Required Operations ... 4-26
4-15 START Extension Parameters .. 4-27
4-16 Buffered Data Delivery Procedure Configuration Parameters 4-36
4-17 Buffered Data Delivery Procedure State Table .. 4-37
4-18 Procedure State Table Incoming Event Description References 4-39
4-19 Procedure State Table Predicate Descriptions .. 4-40
4-20 Procedure State Table Boolean Flags ... 4-40
4-21 Procedure State Table Simple Action References .. 4-41
4-22 Procedure State Table Compound Action Definitions ... 4-42
4-23 Data Processing Procedure Required Operations ... 4-54
4-24 PROCESS-DATA Extension Parameter .. 4-54
4-25 NOTIFY Extension Parameters .. 4-55
4-26 Data Processing Procedure Configuration Parameters ... 4-59
4-27 Data Processing Procedure State Table .. 4-60
4-28 Procedure State Table Incoming Event Description References 4-61
4-29 Procedure State Table Predicate Descriptions .. 4-61
4-30 Procedure State Table Simple Action References .. 4-62
4-31 Procedure State Table Compound Action Definitions ... 4-62
4-32 Buffered Data Processing Procedure Required Operations .. 4-71
4-33 Buffered Data Processing Procedure Configuration Parameters 4-73
4-34 Buffered Data Processing Procedure State Table ... 4-74
4-35 Procedure State Table Incoming Event Description References 4-76
4-36 Procedure State Table Predicate Descriptions .. 4-76
4-37 Procedure State Table Boolean Flags ... 4-76
4-38 Procedure State Table Simple Action References .. 4-77
4-39 Procedure State Table Compound Action Definitions ... 4-77
4-40 Sequence-Controlled Data Processing Procedure Required Operations 4-84
4-41 START Extension Parameters .. 4-85
4-42 PROCESS-DATA Invocation Extension Parameters ... 4-86
4-43 Sequence-Controlled Data Processing Procedure Configuration Parameters 4-91
4-44 Sequence-Controlled Data Processing Procedure State Table 4-92

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page x February 2021

CONTENTS (continued)

Table Page

4-45 Procedure State Table Incoming Event Description References 4-93
4-46 Procedure State Table Predicate Descriptions .. 4-94
4-47 Procedure State Table Simple Action References .. 4-94
4-48 Procedure State Table Compound Action Definitions ... 4-95
4-49 Information Query Procedure Required Operations ... 4-98
4-50 Information Query Procedure Configuration Parameters ... 4-98
4-51 Information Query Procedure State Table .. 4-99
4-52 Procedure State Table Incoming Event Description References 4-99
4-53 Procedure State Table Predicate Descriptions .. 4-99
4-54 Procedure State Table Simple Action References .. 4-99
4-55 Cyclic Report Procedure Required Operations ... 4-105
4-56 START Extension Parameters .. 4-106
4-57 Cyclic Report Procedure Configuration Parameters ... 4-109
4-58 Cyclic Report Procedure State Table .. 4-110
4-59 Procedure State Table Incoming Event Description References 4-110
4-60 Procedure State Table Predicate Descriptions .. 4-111
4-61 Procedure State Table Simple Action References .. 4-111
4-62 Procedure State Table Compound Action Definitions ... 4-111
4-63 Notification Procedure Required Operations .. 4-117
4-64 START Extension Parameters .. 4-117
4-65 Notification Procedure Configuration Parameters .. 4-120
4-66 Notification Procedure State Table ... 4-121
4-67 Procedure State Table Event Description References .. 4-121
4-68 Procedure State Table Predicate Descriptions .. 4-122
4-69 Procedure State Table Simple Action References .. 4-122
4-70 Throw Event Procedure Required Operations .. 4-126
4-71 Throw Event Procedure State Table ... 4-127
4-72 Procedure State Table Incoming Event Description References 4-128
4-73 Procedure State Table Predicate Definitions .. 4-128
4-74 Procedure State Table Simple Action References .. 4-128
A-1 Identification of PICS .. A-4
A-2 Identification of Implementation Under Test .. A-4
A-3 Identification of Supplier ... A-4
A-4 Identification of Specification ... A-5
A-5 Required Procedures .. A-5
A-6 Required PDUs .. A-6
A-7 BIND Invocation Parameters ... A-7
A-8 BIND Return Parameters ... A-8
A-9 PEER-ABORT Invocation Parameters .. A-9
A-10 UNBIND Invocation Parameters ... A-9
A-11 UNBIND Return Parameters ... A-10

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page xi February 2021

CONTENTS (continued)

Table Page

A-12 EXECUTE-DIRECTIVE Invocation Parameters .. A-11
A-13 EXECUTE-DIRECTIVE Acknowledgement Parameters ... A-13
A-14 EXECUTE-DIRECTIVE Return Parameters .. A-14
A-15 GET Invocation Parameters ... A-15
A-16 GET Return Parameters ... A-16
A-17 PROCESS-DATA Invocation Parameters ... A-17
A-18 PROCESS-DATA Return Parameters ... A-19
A-19 START Invocation Parameters .. A-21
A-20 START Return Parameters .. A-23
A-21 STOP Invocation Parameters ... A-25
A-22 STOP Return Parameters ... A-26
A-23 NOTIFY Invocation Parameters .. A-27
A-24 TRANSFER-DATA Invocation Parameters .. A-29
B-1 Production Status Semantic ..B-3
B-2 Production Status Transitions ...B-4
G-1 State Table for CSTSes with a Stateless Prime Procedure Instance G-2
G-2 State Table for CSTSes with a Stateless Prime Procedure Instance:

Event Description References .. G-2
G-3 State Table for CSTSes with a Stateless Prime Procedure Instance:

Predicate Descriptions ... G-3
G-4 State Table for CSTSes with a Stateless Prime Procedure Instance:

Compound Action Definitions ... G-3
G-5 State Table for CSTSes with a Stateful Prime Procedure Instance G-4
G-6 State Table for CSTSes with a Stateful Prime Procedure Instance:

Event Description References .. G-5
G-7 State Table for CSTSes with a Stateful Prime Procedure Instance:

Predicate Descriptions ... G-5
G-8 State Table for CSTSes with a Stateful Prime Procedure Instance:

Compound Action Definitions ... G-5
L-1 Specification of the Subcarrier Level Estimate Parameter ... L-4
L-2 Specification of the Subcarrier Lock Status Parameter .. L-5

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 1-1 February 2021

1 INTRODUCTION

1.1 PURPOSE

The purpose of this Recommended Standard is to define the various logical components, also
known within this Recommended Standard as procedures that are required for specifying
Cross Support Transfer Services (CSTSes).

1.2 SCOPE

1.2.1 This Recommended Standard defines, in an abstract manner, a CSTS in terms of

a) the procedures necessary to provide the service;

b) the states of the service;

c) the behavior of each procedure;

d) the states of the procedures;

e) the operations necessary to constitute the procedures; and

f) the parameters associated with each operation.

1.2.2 It does not specify

a) individual application services, implementations, or products;

b) the implementation of entities or interfaces within real systems;

c) the methods or technologies required to acquire data;

d) the methods or technologies required to provide a suitable environment for
communications; or

e) the management activities required to schedule and configure services.

1.3 APPLICABILITY

1.3.1 APPLICABILITY OF THIS RECOMMENDED STANDARD

This Recommended Standard provides a basis for the specification and development of Cross
Support Services that are intended to be used for developing real systems that implement
such services.

Implementation of a service based on the CSTS procedures defined in this Recommended
Standard in a real system additionally requires the availability of a communications service
to convey invocations and responses of the CSTS operations between the service user and the
service provider.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 1-2 February 2021

This Recommended Standard requires that such a communications service provides a reliable
protocol, that is, that it ensures that invocations and responses of operations are transferred

a) in sequence;

b) completely and with integrity;

c) without duplication;

d) with flow control that notifies the application layer in the event of congestion or
backpressure; and

e) with notification to the application layer in the event that communications between the
service user and the service provider are disrupted, possibly resulting in a loss of data.

It is the specific intent of this Recommended Standard to define the CSTS independently of any
particular communications services, protocols, technologies, or formatting of the data content.

1.3.2 LIMITS OF APPLICABILITY

This Recommended Standard specifies the CSTS procedures that may be used for the
definition of Cross Support Transfer Services. It does not intend to specify a Cross Support
Transfer Service.

1.4 RATIONALE

The goal of this Recommended Standard is to create a standard for interoperability between
various Agencies’ tracking stations or ground data handling systems and the consumers or
producers of spacecraft data and related monitor and/or control information.

1.5 DOCUMENT STRUCTURE

1.5.1 ORGANIZATION OF THIS DOCUMENT

This document is organized as follows:

a) section 1 presents the purpose, scope, applicability, and rationale of this
Recommended Standard and lists the definitions, conventions, and references;

b) section 2 provides an overview of the CSTS Specification Framework;

c) section 3 specifies the common operations to be used by Cross Support Transfer
Services;

d) section 4 specifies the procedures to be used by the Cross Support Transfer Services;

e) annex A contains the proforma of the Protocol Implementation Conformance
Statement;

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 1-3 February 2021

f) annex B provides a formal specification of the production-status parameter
and the ‘production status change’ and ‘production configuration change’ events;

g) annex C provides a formal specification of what a qualified parameter is;

h) annex D provides a formal specification of the Object Identifiers and the management
of their allocation;

i) annex E defines the composition of Functional Resource Names, Parameter Names,
Event Names, Parameter Lists, and Event Lists using Published Identifiers of the
appropriate types;

j) annex F provides a formal specification of data types for Protocol Data Units (PDUs)
for common operations using Abstract Syntax Notation One (ASN.1);

k) annex G provides a description of the service provider states;

l) annex H contains considerations related to security, SANA, and patents;

m) annex I provides a list of informative references;

n) annex J lists acronyms used in this document;

o) annex K provides an informative list of Object Identifiers used by this Recommended
Standard;

p) annex L illustrates by means of examples the concept of Published Identifiers;

q) annex M illustrates how the ASN.1 representations of qualified parameters are
constructed for example CSTS procedure parameters and functional resource
parameters.

1.5.2 CROSS SUPPORT TRANSFER SERVICES DOCUMENTATION

The basic organization of the Cross Support Services documentation and the relationship to
CSTS documentation is shown in figure 1-1.

The Cross Support Architecture is documented in:

a) Space Communications Cross Support—Architecture Description Document
(reference [I8]): An Informational Report describing an architecture in terms of
CCSDS-recommended configurations for secure space communications cross
support. This architecture is intended to be used as a common framework when
CCSDS Agencies a) provide and use space communications cross support services,
and b) develop systems that provide interoperable space communications cross
support.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 1-4 February 2021

b) Space Communications Cross Support—Architecture Requirements Document
(reference [I9]): A Recommended Practice defining a set of requirements for CCSDS-
recommended configurations for secure Space Communications Cross Support
architectures.

Cross Support Services

Cross Support Concept
Part 1: SLE Services

Cross Support Reference
Model

Part 1: SLE Services

SLE Internet Protocol for
Transfer Services

Key: Recommended Standard (Blue)

Report (Green)

Recommended Practice (Magenta)

Cross Support Documents

Cross Support
Architecture

Space Communication
Cross Support –

Architecture Description
Document

Space Communication
Cross Support –

Architecture
Requirements Document

Space Communication
Cross Support Service

Management Suite

Cross Support Transfer Services

Cross Support Transfer
Service Concept

Guidelines for
Specification of Cross

Support Transfer
Services

Cross Support Transfer
Service Specification

Framework
Cross Support Transfer
Service Specification

Suite

Transfer Services

SLE Transfer Services

SLE Transfer Services
Specifications Suite

Figure 1-1: Cross Support Service Documentation

Common to all Cross Support Services:

c) Space Communication Cross Support Service Management suite (references [I4],
[I6], [I7], and [I10]). Data format Recommended Standards that specify the Service
Management Information Entities that are used to configure and schedule cross
support services, which include transfer services.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 1-5 February 2021

Common to the Transfer Services, that is, SLE Transfer Services and Cross Support Transfer
Services:

d) Space Link Extension—Internet Protocol for Transfer Services (reference [2]): A
Recommended Standard that defines a protocol for transfer of PDUs defined in the
Cross Support Transfer Services. This Recommended Standard was originally
developed to support SLE transfer services (hence the title), but it is also applicable
to use by Cross Support Transfer Services.

The concept, the reference model, and the SLE Transfer Services as such are documented in:

e) Cross Support Concept—Part 1: Space Link Extension Services (reference [I2]): A
report introducing the concepts of cross support and the SLE services. Many of the
concepts for the SLE transfer services have been adopted for the CSTSes (see k)
below).

f) Cross Support Reference Model—Part 1: Space Link Extension Services
(reference [1]): A Recommended Standard that defines the framework and
terminology for the specification of SLE services. Much of the framework and
terminology of this reference model has been adopted or adapted for CSTSes (see
1.6.1.3 and 2.2).

g) The SLE Transfer Services suite: The SLE Transfer Services are a suite of Cross
Support Services that are used to transfer specific telecommand and telemetry PDUs.
The SLE Transfer Services are closely related to the CSTS suite in that they
collectively define the set of operations that are the basis for the CSTS Specification
Framework. However, because of history (the SLE Transfer Services were already
specified and implemented prior to development of the CSTS Specification
Framework) the SLE Transfer Services are separated from CSTSes.

The documents specific to Cross Support Transfer Services are:

h) Cross Support Transfer Services Specification Framework (this Recommended
Standard): A Recommended Standard that defines the specification of the Cross
Support Transfer Service procedures;

i) Guidelines for Specification of Cross Support Transfer Services (reference [I3]): A
Recommended Practice that defines the guidelines for construction of a Cross
Support Transfer Service based on the CSTS Specification Framework;

j) Cross Support Transfer Services Concept (reference [I5]): A Report that provides
tutorial material on the objectives and concepts of the CSTS specification;

k) Cross Support Transfer Services Suite: The set of specifications for actual CSTSes
built from the procedures in the CSTS Specification Framework and in accordance
with the CSTS Guidelines.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 1-6 February 2021

1.6 DEFINITIONS

1.6.1 TERMS

1.6.1.1 Terms from Open Systems Interconnection (OSI) Basic Reference Model,
Reference [3]

This Recommended Standard makes use of a number of terms defined in reference [3]. The
use of those terms in this Recommended Standard shall be understood in a generic sense, that
is, in the sense that those terms are generally applicable to technologies that provide for the
exchange of information between real systems. Those terms are

a) abstract syntax;

b) application entity;

c) application layer;

d) flow control; and

e) real system.

1.6.1.2 Terms from Abstract Syntax Notation One, Reference [4]

This Recommended Standard makes use of the following terms defined in reference [4]:

a) ASN.1;

b) Object Identifier (OID);

c) (data) type;

d) (data) value.

NOTE – In annex F of this Recommended Standard, ASN.1 is used for specifying the
abstract syntax of service operation invocations and responses.

1.6.1.3 Terms from Cross Support Reference Model, Reference [1]

This Recommended Standard makes use of the following terms defined in reference [1]:

a) binding;

b) initiator;

c) invoker;

d) operation;

e) performer;

f) physical channel;

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 1-7 February 2021

g) responder;

h) service agreement;

i) service provider;

j) service user;

k) space link.

1.6.1.4 Terms from the Space Communications Cross Support Architecture
Description Document, Reference [I8]

This Recommended Standard makes use of the following terms defined in reference [I8]:

a) Cross Support Service System (CSSS);

b) Earth Space Link Terminal (ESLT);

c) Earth User CSSS;

d) Element Management (EM);

e) Provider CSSS;

f) Provision Management (PM) of the Provider CSSS;

g) Utilization Management (UM) of the Earth User CSSS.

1.6.1.5 Terms from CCSDS SANA Registry Management Policy, Reference [6]

This Recommended Standard makes use of the following terms defined in reference [6]:

a) OID Registry;

b) owned by Agencies;

c) owned by xxx Area;

d) Review Authority;

e) Service Site and Aperture Registry;

f) Spacecraft Registry.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 1-8 February 2021

1.6.1.6 Terms from SANA Role, Responsibilities, Policies, and Procedures, Reference [7]

This Recommended Standard makes use of the following terms defined in reference [7]:

a) delegation;

b) registration rules;

c) registry;

d) SANA Steering Group.

1.6.1.7 Terms Defined in this Specification

1.6.1.7.1 abstract service: The specification of the common operations and behavior of
CSTSes that is not directly implementable because service-specific specifications are still
missing. Real CSTSes can be derived from such abstract service.

1.6.1.7.2 acknowledgement: A confirmation that the invocation sent by the invoker was
accepted by the performer and will now be acted upon.

a) An acknowledgement with a negative result is also called a negative acknowledgement.

b) An acknowledgement with a positive result is also called a positive acknowledgement.

1.6.1.7.3 association: A cooperative relationship between a service-providing application
entity and a service-using application entity. An association is formed by exchanging service
PDUs using an underlying communications service.

1.6.1.7.4 communications service: A capability that enables a CSTS-providing application
entity and a CSTS-using application entity to exchange information.

1.6.1.7.5 confirmed operation: An operation that requires the performer to return a report
of the operation outcome to the invoker. Confirmed operations are further classified as two-
phase operations and three-phase operations.

1.6.1.7.6 Cross Support Service: A set of capabilities that an object that belongs to one
Space Agency provides to objects that belong to other Space Agencies by means of one or
more ports, in support of spacecraft operations. A Cross Support Service can also be used
within a given Space Agency.

1.6.1.7.7 Cross Support Transfer Service, CSTS: A subclass of Cross Support Service
that provides reliable, access-controlled transfer of spaceflight mission-related data between
ground element entities, realized through the invocation and performance of defined
operations in accordance with defined procedures. A CSTS is qualified by the kind of data it
transfers (e.g., telemetry frames, tracking data). A CSTS may optionally have capabilities to
coordinate and observe the behavior of the production with which this service is associated.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 1-9 February 2021

1.6.1.7.8 Cross Support Transfer Service instance: An instance of a specific CSTS type by
means of which an ESLT provides the capability to the service user to transfer the service-type
specific spaceflight mission-related data. There may be CSTSes that operate in other Provider
CSSS nodes than an ESLT. In such cases, “Element Management” would refer to the management
functions that have local purview over the provision and production of those CSTSes.

1.6.1.7.9 Cross Support Service production: Performance of the data acquisition process
and/or the data transformation as necessary for the given type of CSTS.

1.6.1.7.10 Cross Support Utilization Management: The abstraction of the entities within a
real Earth User CSSS that on behalf of the cross supported mission interacts with the PM of
the Provider CSSS to arrange for the required Cross Support Services.

1.6.1.7.11 Cross Support Service provision: Exposing the operations necessary so that the
service user can obtain the service. Provision involves the interface between the service user
and the service provider.

1.6.1.7.12 data acquisition process: The means by which service production provides the
capability to a service provider to access data required for service provisioning or to access
information on service production processes (e.g., physical channel of the space link).

1.6.1.7.13 derivation: A mechanism that allows extending (see 1.6.1.7.19) or refining (see
1.6.1.7.45) an operation or the behavior of a procedure.

NOTE – Derivation can also be applied to a CSTS.

1.6.1.7.14 Directive Identifier: In the context of a CSTS, the unique identifier of a directive
defined for service provision or service production. A Directive Identifier is defined as a
Published Identifier (see D6).

1.6.1.7.15 Directive Name: A data structure consisting of a Directive Identifier that
represents an individual directive type, and a Functional Resource Name that represents the
Functional Resource with which the specific instance of that directive type is associated.

1.6.1.7.16 Event Identifier: In the context of a CSTS, the unique identifier of an event
defined for service provision or service production. An Event Identifier is defined as a
Published Identifier (see D6).

1.6.1.7.17 Event Label: (See E8 for the detailed definition.)

1.6.1.7.18 Event Name: (See E5 for the detailed definition.)

1.6.1.7.19 extension: The act of extending operations or procedures. Operations are
extended by a) adding new parameters to the invocation or response message, or b)
extending the range of values for already existing parameters, or c) changing an unconfirmed
operation into a confirmed operation. Procedures are extended by a) adding new operations
or b) extending the used operations.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 1-10 February 2021

1.6.1.7.20 Framework: A set of generic behaviors (called common procedures) and the
constituent common operations used to simplify the specification of systems providing or
using CSTSes.

1.6.1.7.21 Functional Resource Instance: An instance of a Functional Resource Type.

1.6.1.7.22 Functional Resource Instance Number: An integer index used to identify an
instance of a Functional Resource Type.

1.6.1.7.23 Functional Resource Name: The unique identifier of an instance of a Functional
Resource within the scope of a given service package. A Functional Resource Name is made
of a Functional Resource Type and a Functional Resource Instance Number.

1.6.1.7.24 Functional Resource Type: A logical function or related set of functions that
characterizes a unique instance of service provider or production capability. A Functional
Resource Type is defined as a Published Identifier (see D6).

1.6.1.7.25 invocation: The making of a request by an entity (the invoker) to another entity
(the performer) to carry out the invoked operation.

1.6.1.7.26 Label List: A data structure that specifies the name of a list of Parameter Labels
or Event Labels, indicates if the given list is the default list, and contains all Parameter
Labels or Event Labels represented by that Label List name.

1.6.1.7.27 Label List Set: The set of Label Lists accessible by the user of the given service
instance.

1.6.1.7.28 object: A functional entity that interacts with other objects. Objects are of
different types, which determine their function and behavior. Objects are characterized by
their interfaces, which are called ports. One object may provide multiple ports.

1.6.1.7.29 operation: A task that the invoker requests the performer to execute. Depending on
the type of operation, the performer may or may not report the result of the operation to the
invoker. Service user and service provider interact by invoking and performing operations.

1.6.1.7.30 parameter: In the context of an operation, data that may accompany the
operation’s invocation, acknowledgement, or return.

NOTE – The term parameter is also used to refer to mission-dependent configuration
information used in the production or provision of the service.

1.6.1.7.31 Parameter Identifier: In the context of a CSTS, the unique identifier of a
parameter type defined for service provision or service production. A Parameter Identifier is
defined as a Published Identifier (see D6).

1.6.1.7.32 Parameter Label: (See E7 for the detailed definition.)

1.6.1.7.33 Parameter Name: (See E4 for the detailed definition.)

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 1-11 February 2021

1.6.1.7.34 performance: In the context of an operation, the carrying out of the operation by
an object (the performer).

1.6.1.7.35 port identifier: Identifier of a source or a destination in a communications system.

NOTE – For purposes of the communications mapping, the endpoints of a CSTS
association are identified by port identifiers, namely, an ‘initiator port identifier’
and a ‘responder port identifier’. The port identifiers represent all the technology-
specific addressing information needed to establish communications between
service user and service provider and to route CSTS PDUs between them.

1.6.1.7.36 procedure: A specified series of actions performed using operations that have to
be executed in order to implement a specified behavior.

1.6.1.7.37 procedure configuration parameter: A configuration parameter for a procedure
type. If a service permits multiple instances of a procedure type, each such procedure
instance will have its own instances of (and values for) the procedure configuration
parameters for that procedure type. Unless explicitly specified otherwise in the Framework
definition of a procedure type, the method(s) by which the values of the procedure
configuration parameters are set is (are) delegated to the service using the procedure or to a
derived procedure that may delegate setting of procedure configuration to service
management (see 1.6.1.7.51 and 2.3). Some procedure configuration parameters may be
dynamically modifiable (see 1.6.3.2.6). Dynamic modification of procedure configuration
parameter values is performed by the user of the service that uses that procedure. Unless
explicitly specified otherwise in the Framework definition of a procedure type, the method(s)
by which the values of dynamically modifiable procedure configuration parameters are
modified is (are) delegated to the service using the procedure or to a derived procedure.

NOTE – A method a service may use to set the value of dynamically modifiable procedure
configuration parameters is the THROW-EVENT procedure (see 4.12). A
derived procedure may comprise the EXECUTE-DIRECTIVE operation (see
3.13) as another method to set dynamically modifiable procedure configuration
parameter values. Other methods can be used by services to set dynamically
modifiable configuration parameter values.

1.6.1.7.38 procedure name: The unique identifier of a procedure instance within the scope
of a given service instance. A procedure name is made of the procedure type and the
procedure role. If the procedure role is ‘association control’ or ‘prime procedure’, no
instance number is defined, because only a single procedure instance exists. If the role is
‘secondary procedure’, the procedure role is the instance number of the procedure instance.

1.6.1.7.39 production status: The aggregate status of the production processes that generate
or process the data that is transferred by the transfer service instance.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 1-12 February 2021

1.6.1.7.40 protocol abort: A communications failure event.

NOTE – In the case of a communications disruption, the underlying communications
service will report a communications failure event to the application. Occurrence
of the communications failure event is referred to as a ‘protocol abort’.

1.6.1.7.41 Provision Management: The authority of a Provider CSSS that negotiates the
provision of service packages with UM of an Earth User CSSS and controls and monitors the
production and provision of the CSTS instances by the Functional Resources belonging to
the ESLT via ESLT EM.

1.6.1.7.42 Published Identifier: A unique identifier that allows identification of a
spacecraft, a facility where a CSTS provider is located, a Functional Resource Type, a
procedure type, a parameter, a directive, or an event. Published Identifiers are allocated by
the Space Assigned Numbers Authority (SANA) and registered in standard SANA registries
for use in CCSDS services and protocols, including but not limited to CSTSes.

1.6.1.7.43 real-time data: Data that can be accessed by the service user as soon as it is
collected or generated by the service provider.

1.6.1.7.44 recorded data: Data that has been collected and stored by the service provider
for access by the service user at some later time.

1.6.1.7.45 refinement: The act of refining operations or procedures. Operations are refined
by constraining the values of parameters or by detailing the parameter semantics. Procedures
are refined by modifying (e.g., narrowing) their semantics or defining their behavior or states
in more detail.

1.6.1.7.46 registered parameter: A parameter that has been assigned a Published Identifier
that is registered with SANA as specified in more detail in annex E.

1.6.1.7.47 response: A report, from the performer to the invoker

a) of the acceptance of the invocation sent by the invoker; such response is referred to as
acknowledgement; or

b) of the outcome of the performance of the invoked operation; such report is referred to
as return.

1.6.1.7.48 return: A report, from the performer to the invoker, of the outcome of the
performance of the operation.

a) A return with a negative result is also called a negative return.

b) A return with a positive result is also called a positive return.

1.6.1.7.49 service-original procedure: A procedure that is defined specifically for a particular
service on the basis of one or more of the operations specified in this Recommended Standard.
A service-original procedure is not derived from any other procedure.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 1-13 February 2021

1.6.1.7.50 service instance provision period: The time during which a service is scheduled
to be provided by this instance.

1.6.1.7.51 service management parameter: A configuration parameter of a CSTS for which the
initial value is set by Service Management methods, for example, through a Utilization Request
(see reference [I6]). Some CSTS configuration parameters are explicitly defined to be service
management parameters by this Recommended Standard. In addition, a service using a procedure
or a derived procedure may specify some or all of the procedure configuration parameters (see
1.6.3.2.6) of that (derived) procedure to be service management parameters. For each procedure
configuration parameter that the service using the procedure/derived procedure specifies as being a
service management parameter, Service Management will set one value for that procedure
configuration parameter, which will apply to every instance of that (derived) procedure.

NOTE – All procedure configuration parameters specified to be service management
parameters also have to be part of the parameters of the functional resource types
forming the service production of the given CSTS type or the functional resource
type representing the service instance of the given CSTS type. However, in the
functional resource specification such parameter can be a component of a
complex functional resource parameter. The CSTS specification has to state how
the functional resource parameters are related to procedure configuration
parameters being specified to be service management parameters.

1.6.1.7.52 service package: The set of CSTS instances, which may be of different service
types, together with the specification of the characteristics of the production of those CSTS
instances that are provided by one ESLT to one or more Earth User CSSS as agreed between
the UM function of the Earth User CSSS and the PM function of the Provider CSSS.

1.6.1.7.53 started procedure: A procedure placed in the ‘active’ substate by a successful
START operation.

NOTE – ‘started’ applies to a stateful CSTS procedure that has START and STOP
operations. A started procedure is placed in the ‘active’ substate by a successful
START operation and remains active until the procedure is (a) placed in the
‘inactive’ substate by a successful STOP operation, (b) terminated in response to
a protocol error, or (c) terminated by the Association Control procedure.

1.6.1.7.54 stateful procedure: A procedure with two substates: ‘inactive’ and ‘active’.

1.6.1.7.55 stateless procedure: A procedure without substates.

1.6.1.7.56 three-phase operation: An operation that requires the performer to return to the
invoker an initial acknowledgement of the acceptance of the invocation in addition to the
report of the execution of the operation.

1.6.1.7.57 two-phase operation: An operation that requires the performer to return to the
invoker the report of the execution of the operation.

1.6.1.7.58 unconfirmed operation: An operation for which the performer does not return a
report of its outcome to the invoker.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 1-14 February 2021

1.6.2 NOMENCLATURE

1.6.2.1 Normative Text

The following conventions apply for the normative specifications in this Recommended
Standard:

a) the words ‘shall’ and ‘must’ imply a binding and verifiable specification;

b) the word ‘should’ implies an optional, but desirable, specification;

c) the word ‘may’ implies an optional specification;

d) the words ‘is’, ‘are’, and ‘will’ imply statements of fact.

NOTE – These conventions do not imply constraints on diction in text that is clearly
informative in nature.

1.6.2.2 Informative Text

In the normative sections of this document, informative text is set off from the normative
specifications either in notes or under one of the following subsection headings:

– Overview;

– Background;

– Rationale;

– Discussion.

1.6.3 CONVENTIONS

1.6.3.1 Specification of Operations

1.6.3.1.1 General

Section 3 of this Recommended Standard specifies the common operations that can be used
by CSTSes. The specification of each operation is divided into subsections as described in
1.6.3.1.2 and 1.6.3.1.3.

1.6.3.1.2 Behavior Subsection

The Behavior subsection provides a brief description of the operation. Additionally, it
indicates whether the operation may be invoked by the service user, service provider, or
both; and whether there are any constraints on when the operation may be invoked.

NOTE – Whether the operation is confirmed, unconfirmed, or acknowledged is specified
in the title of the section specifying the operation.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 1-15 February 2021

1.6.3.1.3 Invocation, Response, and Parameters Subsection

The Invocation, Response, and Parameters subsection describes the parameters associated
with each operation, including their semantics. A table accompanying the description of
each operation lists all parameters associated with the operation and, for the invocation, the
acknowledgement (if applicable) and the return, and whether the parameter is always present,
always absent, or conditionally present.

For parameters that are conditionally present, the parameter description specifies the
conditions for the presence or absence of the parameter. The condition is generally based on
the value of another parameter in the same invocation, acknowledgement, or return; for
example, in the return of an operation, the diagnostic parameter is present if and only if
the value of the result parameter is ‘negative’. For a conditional parameter in a return, the
condition may be based on the value of a parameter in the corresponding invocation.

In the table, the following convention is used to indicate whether a parameter is always
present, always absent, or conditionally present:

a) M Mandatory, that is, always present;

b) C Conditionally present;

c) Blank Always absent.

NOTE – Even though a parameter is characterized as always present, its description may
specify that its value may be left unspecified. Given that in ASN.1 a parameter
value not set to a specific value is mapped to the NULL type (see annex F), this by
convention in this document is expressed as this parameter having the value ‘null’.

1.6.3.2 Specification of Procedures

1.6.3.2.1 General

Section 4 of this Recommended Standard specifies the procedures that can be used by
CSTSes. The specification of each procedure is divided into subsections as described in
1.6.3.2.2 through 1.6.3.2.6.

Each procedure section follows a common template covering a descriptive and a prescriptive part.

1.6.3.2.2 Version Number Subsection

The version number of the procedure is identified in the Version Number subsection and is
used by the service using that procedure.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 1-16 February 2021

1.6.3.2.3 Discussion Subsection

The descriptive part covers the purpose and the concept of the procedure. This part provides
the reader with an overview of the procedure.

1.6.3.2.4 Behavior Subsection

The prescriptive part introduces the sequence of activities that describes the behavior of the
procedure, for example, starting, running, and ending the activities. The operations required
by the procedure are listed, and for each of them, the procedure identifies those operations
that are extended and/or refined by the procedure. For those operations that require extension
or refinement, the details are provided. For those operations that do not require extension or
refinement, the operations are not repeated as they fully conform to the common definition of
the common operations (see section 3) or to the specification of the procedure from which
the described procedure is derived (e.g., the Cyclic Report procedure is derived from the
Unbuffered Data Delivery procedure).

The prescriptive part ends with the service provider state transition table applicable to the
procedure.

1.6.3.2.5 Required Operations Subsection

This Required Operations subsection identifies the operations used by the procedure.

1.6.3.2.6 Configuration Parameters Subsection

This Configuration Parameters subsection lists the parameters that need to be configured in
the context of this procedure.

This subsection also identifies those parameters that may be accessed (read) by the service
user of any service that includes a procedure that contains a GET operation. For each
configuration parameter, this subsection provides cross references to the use of the parameter
in the specification of the procedure and also identifies the Parameter Identifier to be used in
reporting the value of the parameter (see 1.6.1.7.33).

Furthermore, this subsection specifies which, if any, of the configuration parameter values
may be dynamically modified. The modification of such parameters can be performed at any
time while the procedure instance for the configuration to be modified exists, including while
the service that is executing the procedure is bound. If one or more configuration parameters
are dynamically modifiable, the subsection identifies the event that is used to notify (by
means of the NOTIFY operation) when such a modification has occurred.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 1-17 February 2021

1.6.3.2.7 Procedure State Table Subsection

Each stateful procedure is complemented with a state transition table describing the behavior of
the service provider implementing the procedure. The state tables follow the following rules:

a) The state tables specify operation interactions and state transitions for the procedures
on the service provider side in its role as either invoker or performer.

b) The leftmost column simply numbers the rows of the table.

c) The second column of the state table lists all incoming events. Where these events
correspond to the arrival of an incoming PDU, the ASN.1 type defined for this PDU
in annex F is indicated in parentheses (()).

d) The description of an event that is internal to the service provider is put in single
quotation marks (‘ ’).

e) The following columns (one column per state) on the right side of the table specify
the behavior the service provider will exhibit, which depends on the current state and
the incoming event. In some cases, the behavior additionally depends on Boolean
conditions, also referred to as predicates. Such conditions are put in double quotation
marks (“ ”). The predicates are defined in a table following the procedure state table.
Predicates that are simple Boolean variables set only by that state machine itself are
referred to as Boolean flags. The dependency on a predicate is presented in the form
of an IF <condition> THEN <action> [[ELSEIF <condition> THEN <action>] ELSE
<action>] ENDIF clause.

f) If the action given in the table is simply to send a specific PDU, that is indicated by the
appearance of the name of the ASN.1 type of the PDU to be sent in parentheses (()). If
that PDU is a return or an acknowledgement, the name may be preceded by the plus
symbol (‘+’) to indicate that result is ‘positive’ or by the negative symbol (‘−’) to
indicate that result is ‘negative’. If several actions are to be taken (referred to as a
‘compound action’), the name of the compound action is put in curly braces ({ }).
The individual actions making up each compound action are identified in a table
following the procedure state table. If a simple action is to be taken, the name of the
action is put in single quotes (‘ ’).

g) ‘Not applicable’ is stated when the given event can only occur in the given state
because of an implementation error on the service provider side.

h) If the consequences of an incoming event are not visible to the service user because
the service provider does not send any PDU in reaction to the given event, the action
is put in square brackets ([]).

i) State transitions are indicated by an arrow and the number of the state that will be
entered; for example, ‘ 1’ indicates the transition to state 1.

j) The actions to be taken and the state transition are considered to be one atomic action.
The sequence in which the actions shown in the table are executed is irrelevant except
that the sending of PDUs shall be performed in the sequence stated in the table.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 1-18 February 2021

k) Whenever the service user invokes a confirmed operation with invoke-id set to <n>,
it is expected to start an associated response <n> timer with the value specified by the
response-timeout functional resource configuration parameter (see 3.2.1.2).
Should this timer expire before the response <n> is received, the service user is
expected to invoke PEER-ABORT with the diagnostic set to ‘response timeout’.

l) Whenever a procedure is derived from another procedure (also called parent
procedure), the following applies:

1) the derived procedure’s state table contains at least the same incoming events as
the parent procedure, but may have additional ones;

2) whenever the behavior in a given state and for an incoming event is fully identical
to that of the parent procedure, its description is copied from the parent
procedure, but the text is italicized to highlight that the behavior is fully inherited
from the parent procedure;

3) whenever the behavior in a given state and for an incoming event is not fully
identical to that of the parent procedure,

– the behavior copied from the parent procedure is written in italic typeface, and

– the behavior specific to the derived procedure is written in plain text;

4) the same convention applies to all tables directly associated with the state table.

1.6.3.3 Typographic Conventions

1.6.3.3.1 Operation Names

Names of service operations appear in uppercase.

1.6.3.3.2 Procedure Type Naming

The strings used to identify procedure types appear with initial capital letters (e.g., Buffered
Data Delivery).

1.6.3.3.3 Parameter Names

In the main text, names of parameters of service operations generally appear in lowercase
and are typeset in a fixed-width font (e.g., responder-port-identifier). The same
convention is applied to parameters that are not service operation parameters but are
elements of a complex type parameter that is a service operation parameter. In annex F, the
corresponding name is formed by omitting any hyphens contained in the name and using
mixed-case (e.g., responderPortIdentifier).

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 1-19 February 2021

1.6.3.3.4 Value Names

The values of many parameters discussed in this Recommended Standard are represented by
names. In the main text, those names are shown in quotation marks (e.g., ‘no such service
instance’). The corresponding name in annex F is formed by omitting any hyphens or white
space contained in the name and using mixed-case (e.g., noSuchServiceInstance).
The actual value associated with the name is constrained by the type of the parameter taking
on that value. Parameter types are specified in annex F of this Recommended Standard.

NOTE – The name of a value does not imply anything about its type. For example, the
value ‘no such service instance’ has the appearance of a character string but
might be assigned to a parameter whose type is ‘integer’.

1.6.3.3.5 State Names

This Recommended Standard specifies the states of service providers. States may be referred
to by number (e.g., state 2) or by name. State names are always shown in single quotation
marks (e.g., ‘active’).

1.6.3.3.6 PDU Names

The names of PDUs appear in mixed-case (e.g., BindInvocation).

1.6.3.3.7 Data Type Definitions

Data type definitions are presented in annex F in the form of a set of ASN.1 modules.
Regardless of the conventions used elsewhere in this Recommended Standard, the text of the
ASN.1 modules is typeset entirely in a fixed-width font.

1.6.3.3.8 Normative Mechanism and Data Structure Names

The names of normative mechanisms and data structures appear with initial capital letters
(e.g., CSTS, Functional Resource Name, Published Identifier). Such mechanisms and data
structures have defined roles in the functioning of operations and procedures.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 1-20 February 2021

1.7 REFERENCES

The following publications contain provisions which, through reference in this text,
constitute provisions of this document. At the time of publication, the editions indicated
were valid. All publications are subject to revision, and users of this document are
encouraged to investigate the possibility of applying the most recent editions of the
publications indicated below. The CCSDS Secretariat maintains a register of currently valid
CCSDS publications.

NOTE – A list of informative references is provided in annex I.

[1] Cross Support Reference Model—Part 1: Space Link Extension Services. Issue 2.
Recommendation for Space Data System Standards (Blue Book), CCSDS 910.4-B-2.
Washington, D.C.: CCSDS, October 2005.

[2] Space Link Extension—Internet Protocol for Transfer Services. Issue 2.
Recommendation for Space Data System Standards (Blue Book), CCSDS 913.1-B-2.
Washington, D.C.: CCSDS, September 2015.

[3] Information Technology—Open Systems Interconnection—Basic Reference Model: The
Basic Model. 2nd ed. International Standard, ISO/IEC 7498-1:1994. Geneva: ISO, 1994.

[4] Information Technology—Abstract Syntax Notation One (ASN.1): Specification of Basic
Notation. 4th ed. International Standard, ISO/IEC 8824-1:2008. Geneva: ISO, 2008.

[5] Time Code Formats. Issue 4. Recommendation for Space Data System Standards (Blue
Book), CCSDS 301.0-B-4. Washington, D.C.: CCSDS, November 2010.

[6] CCSDS SANA Registry Management Policy. Issue 2. CCSDS Record (Yellow Book),
CCSDS 313.1-Y-2. Washington, D.C.: CCSDS, October 2020.

 [7] Space Assigned Numbers Authority (SANA)—Role, Responsibilities, Policies, and
Procedures. Issue 3. CCSDS Record (Yellow Book), CCSDS 313.0-Y-3. Washington,
D.C.: CCSDS, October 2020.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 2-1 February 2021

2 DESCRIPTION OF CROSS SUPPORT SERVICES

2.1 OVERVIEW

Cross Support Transfer Services provide for reliable, access-controlled transfer of spaceflight
mission related data between ground element entities. A Cross Support Service is characterized
by the kind of data it transfers (e.g., telemetry data, tracking data, service production
monitoring data), and therefore different CSTSes need to respond to specific requirements that
may demand specific solutions. On the other hand, all CSTSes defined by CCSDS apply the
same basic communications patterns in order to simplify specification, implementation, and
operation of these services. The basic approach applied to CSTSes is that they are realized
through invocation and performance of operations in accordance with well-defined procedures.

This Recommended Standard provides a Specification Framework for CSTSes with the
objective to

a) maximize the commonality between CCSDS CSTSes;

b) simplify specification of new CCSDS CSTSes; and

c) enable the design and implementation of reusable software components with the
potential of simplifying the implementation of CSTSes.

NOTE – While this specification strives for enabling the design and implementation of reusable
software components, it does not intend to provide a specification for such components.

This Recommended Standard defines basic building blocks from which services can be
constructed. The companion Recommended Practice, Guidelines for Specifications of Cross
Support Transfer Services (reference [I3]), defines the rules to be used for the specification
of CSTSes.

Building blocks defined by the CSTS Specification Framework include

a) data types for information exchanged between service user and service provider;

b) common operations that are invoked by one entity and performed by the other entity
and as such implement the basic elements of interaction between service user and
service provider; and

c) common procedures that define the behavior and protocol for the invocation and
performance of a set of operations to achieve a well-defined objective.

A CSTS may be defined by combining a set of procedures specified in the CSTS
Specification Framework in a manner that best suits the objective of the service.

To be generally applicable, parameters, operations, and procedures defined by the CSTS
Specification Framework are sufficiently abstract that they may or may not be directly usable
for real services. For cases in which the building blocks are not directly usable, new operations
or procedures can be derived from those defined in the CSTS Specification Framework.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 2-2 February 2021

Taking the concept of generic definitions one step further, this Recommended Standard
supports the concept of abstract services (see reference [I5]) that specify the common
operations and behavior of CSTSes but are not directly implementable because service-specific
specifications are still missing. Real CSTSes can be derived from such abstract services.

NOTE – An example of an abstract service could be a CSTS Return Link Service from
which real services such as CSTS RAF, CSTS RCF, and CSTS ROCF could be
derived. These CSTSes would be equivalent to SLE RAF, SLE RCF, and SLE
ROCF.

The relationships between the elements of the CSTS Specification Framework and example
CSTSes based on the Framework are illustrated in figure 2-1.

PEER-
ABORT

STARTUNBINDBIND STOP NOTIFY GETPROCESS-
DATA

TRANSFER-
DATA

EXECUTE-
DIRECTIVE

Association
Control

Unbuffered
Data Delivery

Cyclic Report
Buffered

Data Delivery

Data
Processing

Notification

Buffered Data
Processing

Sequence Controlled
Data Processing

Throw Event

Information
Query

CSTS Specification Framework

Operation Procedure AB
uses

A B
is derived from

Key :

CSTS RAF Svc

Service

Configuration

New procedure

Yet Another Svc

Monitor Data Svc Abstract Return Svc

CSTS RCF Svc

Figure 2-1: CSTS Specification Framework Concept

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 2-3 February 2021

2.2 CROSS SUPPORT REFERENCE MODEL

2.2.1 INTRODUCTION

CCSDS Cross Support Transfer Services are defined within a framework that is a logical
extension of the Cross Support Reference Model (reference [1]) that was originally defined for
Space Link Extension (SLE) services. The following subsections summarize concepts from the
reference model that are supported by the CSTS Specification Framework and to which later
sections in this Recommended Standard refer. Formal definitions of terms are provided in 1.6.

Before a Cross Support Transfer Service can be used, an association needs to be established
between service user and service provider by binding the ports associated with the specific
CSTS. To that end, the initiator issues the request to bind to the responder. If the responder can
complete the binding, the required association is established and service user and service
provider can invoke and perform the operations of the given CSTS type. Depending on the type
of operation, the performer may or may not report the result of the operation to the invoker.

2.2.2 SERVICE PRODUCTION AND PROVISION

2.2.2.1 General

The Cross Support Reference Model (reference [1]) distinguishes between service production
and service provision.

Cross Support Service production refers to the common processes performed by service
production of an ESLT associated with the provision of one or more Cross Support Services.

An ESLT is said to provide a service when it makes available to the service user the capability
to obtain the service via one or more of its ports. Provision involves the interface between the
service user and the service provider, and is characterized by the type(s) of data transferred and
the quality of service with which they are transferred (e.g., completely, reliably, etc.).

The CSTS Specification Framework deals primarily with service provision. Service production
is generally very specific for specific services or a class of services, and therefore the CSTS
Specification Framework makes only very general assumptions on service production.

2.2.2.2 Production Status

Each Functional Resource that represents a CSTS instance has a production-status
parameter. Each CSTS specifies how the production-status value shall be determined
based on the aggregate status of the Functional Resource Instances involved in the service
production, each of which maintains a resource-status parameter that is accessible by the
CSTS instance. This Recommended Standard defines the permissible values of production-
status and the transitions between these values. The effects of these production-status
value changes on the behavior of the procedures are specified in 4.3 to 4.12.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 2-4 February 2021

If absolutely necessary, the definitions of these production-status values may be
refined by service specifications that are based on the CSTS Specification Framework.
CSTS specifications may also define substates for one or more of the production-
status values where appropriate.

Since production-status is a parameter of the Functional Resource representing the CSTS
instance, the formal assignment of the parameter OID and the specification of the parameter data
type is part of the specification of that Functional Resource. The SANA Functional Resources
Registry (https://sanaregistry.org/r/functional_resources) specifies a production status data type that
conforms to the production status specification in annex B. Every Functional Resource that
represents a CSTS defines a production-status parameter that uses either the
production-status data type specified in the SANA Functional Resource Registry or a
derivation of that data type. Use of the same data type specification for all CSTS instances
representing Functional Resources is strongly recommended.

Production status changes may be notified to the service user via any procedure that includes
the NOTIFY operation (3.11), for example, the Notification procedure (see 4.11). As for any
other parameter, the current value of the production-status parameter may be
obtained using (a) the Cyclic Report procedure defined in 4.10, if that is supported by the
service, or (b) the GET operation, if any procedure of the service (including the Information
Query procedure) uses the GET operation.

2.3 SERVICE MANAGEMENT

For all CSTSes, service management determines the number and schedule of service
instances to be provided, the resources required to enable those service instances, and the
initial configuration of all service instances and their supporting resources. Configuration
parameters that have their initial values set through Service Management are called service
management parameters (see 1.6.1.7.51). Cross Support Service Management is the subject
of separate CCSDS Recommended Standards (see references [I6] and [I7]).

Service management parameters may refer to service provision or to service production.
Explicit specification of service management parameters in this Recommended Standard is
confined to a small set of service provision parameters, including

a) the service initiator (i.e., the service user) and the service responder (i.e., the service provider);

b) the port at which the service is made available; and

c) the service instance identifier.

For some procedures, this Recommended Standard identifies procedure configuration
parameters that are known to the service user and the service provider but the definition of
how their values are determined is delegated to the service specification. The service
specification may specify these values, or designate them to be service management
parameters. Reference [I3] provides guidelines on how service management parameters are
to be handled in derived service specifications.

https://sanaregistry.org/r/functional_resources/

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 2-5 February 2021

For service management parameters that correspond to procedure configuration parameters,
Service Management will configure all instances of a given procedure type being associated
with a given service instance equally.

Some procedure configuration parameters of individual procedure instances may be updated
dynamically at any time while the procedure instance exists, including the time while the
service instance executing the procedure instances is bound. The dynamic modification of such
procedure configuration parameters is outside the scope of Service Management and must be
carried out within the CSTS instance itself, for example, through a Throw Event procedure that
is part of that service. The particular method(s) by which dynamic modifications of procedure
configuration parameters are performed is left to the definition of the services that use such
dynamically modifiable procedure configurations. For each CSTS that has dynamically
modifiable configuration parameters, the service specification specifies whether and how the
current values of those dynamically modifiable procedure configuration parameters are made
visible through parameters of the Functional Resource that represents that CSTS.

2.4 ELEMENTS OF THE CSTS SPECIFICATION FRAMEWORK

2.4.1 COMMON OPERATIONS

An operation is a task that the invoker requests the performer to execute and as such presents
the basic interaction pattern between the service user and the service provider. The invocation
of an operation may include parameters that specify further details of the task to be performed.

Operations are further classified by the number of interactions required to complete the operation:

a) An unconfirmed operation is invoked by the invoker and performed by the
performer, but there is no report on the outcome of the operation.

b) For a confirmed operation, the performer provides a report (the ‘return’) to the
invoker on success or failure of the operation. Operation returns comprise an
indication of success (result has the value ‘positive’) or failure (result has the
value ‘negative’) and, in case of failure, a diagnostic that further specifies the
reason for the failure. Confirmed operations are further classified as

1) two-phase operations, for which the performer returns a single report to the invoker; and

2) three-phase operations, for which the performer provides an initial response in the
form of an acknowledgement when receiving the invocation and subsequently issues
the return when the operation has completed. This type of operation is typically used
for operations in which the task to be performed requires non-negligible time to
complete. The acknowledgement confirms that the invocation has been received and
understood and that the general preconditions for the operation are fulfilled.

NOTE – In labeling confirmed operations, the designation (CONFIRMED) identifies a
two-phase confirmed operation, and (ACKNOWLEDGED) identifies a three-
phase confirmed operation.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 2-6 February 2021

Confirmed operations are further classified as blocking or non-blocking with respect to the
procedure that uses the operation. When a blocking operation has been invoked, no further
operation of the same procedure instance can be invoked before the return to the invocation
has been received. Non-Blocking (NB) operations do not impose any constraints with
respect to invocation of further operations.

The CSTS Specification Framework defines standard operation headers for unconfirmed and
confirmed operations and a set of common operations for use within CSTS. To be of general
use, the operations of the CSTS Specification Framework are rather abstract and might not
all be directly usable within a procedure used by a specific CSTS. However, all operations
used in a procedure of a CSTS that conforms to this Recommended Standard are derived
directly or indirectly from the operations specified herein applying the rules described in 2.5.

The common operations defined by the CSTS Specification Framework are listed in table 2-1.
Section 3 of this Recommended Standard provides the detailed specification of these operations.

Table 2-1: Common Operations Defined by the CSTS Specification Framework

Operation Invoked By Purpose Confirmed
Ack. Ret

BIND service user Establishment of an association with the
peer.

No Yes

UNBIND service user Release of an association previously
established by a BIND operation.

No Yes

PEER-ABORT service user
or service
provider

Notification to the peer that the local
application detected an error that requires
the association to be terminated.

No No

START service user Request that the service provider start
performing activities associated with the
procedure using the operation.

No Yes

STOP service user Request that the service provider stop
performing activities associated with the
procedure using the operation.

No Yes

TRANSFER-
DATA

service
provider

Transfer of a data unit to the service user. No No

PROCESS-
DATA

service user Request that the service provider process
the data received.

No No/
Yes (see
NOTE)

NOTIFY service
provider

Sending of a notification of an event to a
service user.

No No

GET service user Ascertainment of the value of (a) service
parameter(s).

No Yes

EXECUTE-
DIRECTIVE

service user Request that the service provider perform a
predefined action.

Yes Yes

NOTE – For the PROCESS-DATA operation, both an unconfirmed and a confirmed
variant exist. It is at the discretion of the procedure using this operation to specify
if the unconfirmed or confirmed variant is used.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 2-7 February 2021

2.4.2 COMMON PROCEDURES

Procedures define the protocol and the expected behavior for the invocation and performance
of a set of operations to achieve a well-defined objective. A CSTS may be specified by
assembling a given set of procedures to handle specific aspects of the service.

For instance, a service that forwards telemetry received on the space link can be broken
down into a number of procedures that handle association establishment and release, actual
transfer of telemetry data units, status reporting, and querying of the service configuration
parameters. All of these procedures except for telemetry data transfer can also be used for a
service that supports reception and radiation of telecommands, in which only a subset of the
parameters in the reports differs.

The specification of a procedure includes

a) a description of the objective of the procedure, including all assumptions that are made with
respect to the type of data to be transferred and the service production process (descriptive);

b) a definition of the behavior of this procedure (prescriptive);
c) a definition of the operations that constitute this procedure (prescriptive);
d) a description of behavior expected of the service provider supported by a service

provider side state matrix, as applicable (prescriptive).

As far as the protocol is concerned, procedures can be stateful or stateless. A stateful
procedure supports the states ‘inactive’ and ‘active’, with transitions between these states
triggered by well-defined operation invocations or responses. Typically, the transition from
‘inactive’ to ‘active’ is triggered by a START invocation, and the transition from ‘active’ to
‘inactive’ is triggered by a STOP return. However, other transitions may exist. For instance,
procedures using three-phase operations might transition from ‘inactive’ to ‘active’ with the
operation invocation and back to ‘inactive’ with the final return.

NOTE – The Association Control procedure is an exception to the above rules. The
Association Control procedure does not belong to any class (stateful or stateless)
and is required to manage the association.

A CSTS will typically use more than one procedure in addition to the Association Control
procedure and may require more than one procedure of the same type to be active at the same time,
for example, to transfer different data streams concurrently. Therefore this Recommended
Standard distinguishes between the procedure type and the procedure instance. The procedure
type corresponds to the specification of the procedure or the supporting program that implements
the procedure specification. A procedure of a given type can be instantiated once or several times
as part of the instantiation of the service using this procedure. Different instances of the procedure
are distinguished by a ‘procedure name’ that is assigned by service management when creating the
service package and included in all operation invocation and response headers.

NOTE – Further information on how a service uses predefined procedures is provided in 2.5.
Normative rules for this purpose are specified in reference [I3].

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 2-8 February 2021

The CSTS Specification Framework defines a set of common procedures that cover typical
tasks of a CSTS. In order to be commonly usable, the procedure definition and in particular
the purpose and semantics specification are reasonably abstract, such that the specifications
as provided by this Recommended Standard may sometimes not be directly usable. For those
cases, reference [I3] specifies methods to derive more specific procedures from these
common procedures.

Table 2-2 identifies the common procedures included in this CSTS Specification Framework
and table 2-3 shows the operations that are used by these procedures. Section 4 of this
Recommended Standard provides the detailed specification of these procedures.

Table 2-2: Common Procedures Defined by the CSTS Specification Framework

Procedure Purpose Class
Association Control Establishment and release of an association between a service user

and a service provider.
N/A

Unbuffered Data
Delivery

Best effort transfer of bulk data, structured into data units, sent from
the service provider to the service user in real-time delivery mode.

SF

Buffered Data
Delivery

In-sequence transfer of bulk data, structured into data units, sent
from the service provider to the service user. In real-time mode, low
latency is given priority over data completeness. In complete mode,
data completeness is given priority over low latency.

SF

Data Processing Processing of individual data units in the sequence as sent by the service
user to the service provider and reporting of processing progress.

SF

Buffered Data
Processing

Processing of data units contained in buffers in the sequence as
sent by the service user to the service provider and reporting of
processing progress. Processing may be in complete mode at the
expense of latency or in timely mode at the expense of data loss.

SF

Sequence-
Controlled Data
Processing

Processing with full flow control of individual data units in the
sequence as sent by the service user to the service provider and
reporting of processing progress.

SF

Information Query Query by the service user of the value of one or more parameters
related to the service provider or service production behavior.

SL

Cyclic Report Periodic reporting of parameter values from the service provider to
the service user.

SF

Notification Notification of the service user by the service provider of events of
interest to the service user.

SF

Throw Event Signaling to the service provider the occurrence of an event
requiring a configuration change action and report of the result of the
action back to the service user.

SF

NOTE – ‘SF’ and ‘SL’ indicate ‘stateful’ and ‘stateless’, respectively.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 2-9 February 2021

Table 2-3: Use of Operations by Common Procedures

A
ss

oc
ia

tio
n

C
on

tr
ol

U
nb

uf
fe

re
d

D
at

a
D

el
iv

er
y

B
uf

fe
re

d
D

at
a

D
el

iv
er

y

D
at

a
Pr

oc
es

si
ng

B
uf

fe
re

d
D

at
a

Pr
oc

es
si

ng

Se
qu

en
ce

-c
on

tr
ol

le
d

D
at

a
Pr

oc
es

si
ng

In
fo

rm
at

io
n

Q
ue

ry

C
yc

lic
 R

ep
or

t

N
ot

ifi
ca

tio
n

T
hr

ow
 E

ve
nt

BIND B

UNBIND B

PEER-ABORT NB

START B B B B B B B

STOP B B B B B B B

TRANSFER-
DATA NB NB NB

PROCESS-
DATA NB NB NB

GET NB

NOTIFY NB NB NB NB NB

EXECUTE-
DIRECTIVE NB NB

NOTE – ‘B’ and ‘NB’ indicate that the operation is ‘Blocking’ or ‘Non-Blocking’,
respectively.

2.5 PRINCIPLES OF USING THE CSTS SPECIFICATION FRAMEWORK

2.5.1 OVERVIEW

The CSTS Specification Framework provides a set of reusable building blocks for the
specification of CSTSes and defines general rules by which such building blocks can be
extended and refined to match the specific requirements of a CSTS.

The specification of a CSTS can be constructed by composition of procedures that either are
fully predefined within the CSTS Specification Framework or are derived from those defined
in the Framework. Specification of a completely new service-specific procedure using
common operations or operations derived from the common operations is permissible but is
not recommended.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 2-10 February 2021

The rules for derivation of operations and procedures have been rigorously applied to the
specification of the CSTS Specification Framework itself:

a) The common procedures specified in section 4 present the most abstract and general
version; several procedures defined within the CSTS Specification Framework derive
extended operations, which may be further derived by services using these
procedures.

b) Some of the procedures defined within the CSTS Specification Framework are
derived from more basic procedures also defined in the Framework. For instance, the
Cyclic Report procedure is derived from the Unbuffered Data Delivery procedure.

The derivation rules can be further applied to operations and procedures that have been
derived from the operations and procedures defined within the CSTS Specification
Framework. It is envisaged that such operations and procedures might eventually be
included in the Framework if they prove to be useful for more than one service type.

The normative specification of the rules for derivation of operations and procedures and for
composition of services can be found in reference [I3]. The following subsections provide a
brief summary.

2.5.2 DERIVATION OF OPERATIONS AND PROCEDURES

Derivation of operations and procedures from the building blocks defined in the CSTS
Specification Framework encompasses two dimensions:

a) extension, by which new data or behavior are added to a specification; and

b) refinement, by which the range of values may be constrained or the semantics of
parameters may be specialized.

Operations may be extended in the following ways:

a) New parameters may be added (syntax and semantics specification) to an operation
invocation or response; unless explicitly specified otherwise, all operations defined in
the CSTS Specification Framework can be extended in this way.

b) In some cases, additional values may be defined for an existing parameter (e.g.,
additional diagnostic values or additional types of notification).

c) In some cases, the format and content of a parameter may have to be specified by the
service using the corresponding operation. This is necessary because, for some
operations, there are parameters whose structure is unspecified.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 2-11 February 2021

Operations may be refined by narrowing the value range of a parameter or by specializing the
meaning of a parameter. For instance, the generation-time parameter of the
TRANSFER-DATA operation in the Buffered Data Delivery procedure may be refined for a
procedure dealing with transfer of telemetry by stating that the generation-time is the
Earth Receive Time of the telemetry frame being transferred.

Procedures may be extended in the following ways:

a) extension of the operations used by a procedure, as described above;

b) addition of operations defined in the CSTS Specification Framework or derived from
operations defined in the Framework.

Procedures may be refined by narrowing the specification of the semantics associated with
the procedure or by adding more detail to the behavior description or the state table. The
refinement of a procedure does not imply the definition of a new procedure.

As an example, a Telemetry Delivery procedure could be derived from the Buffered Data
Delivery procedure by extension and refinement of the operations START and TRANSFER
DATA and by refinement of the semantics associated with the data to be transferred and the
parameters of the operations. The extension of a procedure implies the definition of a new
procedure (derived procedure).

2.5.3 SPECIFICATION OF SERVICES BY COMPOSITION OF PROCEDURES

A CSTS can be specified by composition of procedures defined in the CSTS Specification
Framework, derived from procedures in the Framework or derived from an existing CSTS.

Every service includes the Association Control procedure (see 4.3). Only a single instance of
the Association Control procedure exists throughout the lifetime of a transfer service instance.

In addition to the Association Control procedure a service may comprise any number of
further procedure types and may use one or more instances of each procedure type.
However, one single procedure instance is designated the prime procedure of the service.
All other procedure instances are referred to as secondary procedures.

NOTE – The prime procedure (instance) can be of the same type as one or more secondary
procedure instances.

The prime procedure (instance) of a service should reflect the primary purpose of the service.
In practical terms it determines the state of the service and as such determines the orderly
association release as detailed in 2.6.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 2-12 February 2021

2.6 PROTOCOL DESCRIPTION

2.6.1 STATES OF THE SERVICE PROVIDER

The service user and service provider of a CSTS can interact as soon as the associated
service ports are bound by establishment of an association between them. Binding is
achieved by the Association Control procedure that is included in every CSTS.

Once the service instance is bound, other procedures used by the service can be operated
according to their specific protocol.

NOTE – This Recommended Standard does not specify any interdependencies between
the procedures that constitute a service. However, the service specification may
specify dependencies that must be observed, for example, with respect to the
sequence in which procedures are started.

When the service instance is bound, the service state is further determined by the state of the
prime procedure (instance). If the prime procedure is stateful, the state ‘bound’ has two
substates: ‘ready’ and ‘active’. When the prime procedure is ‘inactive’, the service instance
is in the state ‘bound.ready’, and when the prime procedure is ‘active’, the service instance is
in the state ‘bound.active’. If the prime procedure is stateless, then the service state ‘bound’
has no substates.

A service instance having a stateful prime procedure can be unbound by the service user in
an orderly manner only while in the state ‘bound.ready’, that is, while the prime procedure is
‘inactive’. Service instances with a stateless prime procedure can be unbound at any time.
Finally, a service instance may be aborted by either entity at any time by invoking the PEER-
ABORT operation.

Any stateful secondary procedure has a state machine of its own but has no effect on the
overall service instance state. This implies that the UNBIND operation can be invoked while
one or more stateful secondary procedures are in the state ‘active’. Therefore, for a stateful
secondary procedure, unbinding has the same effect as PEER-ABORT.

Any stateless secondary procedure is unaffected by the overall service instance state. The
operations of any stateless secondary procedure instance may be invoked whenever the
service instance is in the ‘bound.ready’ or ‘bound.active’ state if the prime procedure of that
service is stateful, or when the service instance is in the ‘bound’ state if the prime procedure
of that service is stateless.

The overall relationship of the states of the service instance, the prime procedure, and
secondary procedures is illustrated in figures 2-2 and 2-3 for a stateful and a stateless prime
procedure, respectively.

NOTE – The diagrams in figures 2-2 and 2-3 do not present state diagrams in a formal
sense, as they present different state machines in a synoptic view. The
corresponding normative statements can be found in annex G.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 2-13 February 2021

State 1:
‘unbound’

State 2:
‘bound’

State 2.1: ‘bound.ready’
(Stateful Prime

Procedure)

Stateful Secondary
Procedure: ‘inactive’

Stateful Secondary
Procedure: ‘active’

Stateless Secondary
Procedure

Accept
BIND

UNBIND
PEER-ABORT

PEER-ABORT

Secondary Procedure
Activation

Secondary Procedure
Deactivation

Operation
Invocation

State 2.2: ‘bound.active’
(Stateful Prime

Procedure)

Prime Procedure
Activation

Prime Procedure
Deactivation

Figure 2-2: Service and Procedure States (Stateful Prime Procedure)

NOTE – The activation and deactivation of stateful procedures is further specified in 4.2.4.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 2-14 February 2021

State 1:
‘unbound’

State 2:
‘bound’

State 2: ‘bound’
(Stateless Prime

Procedure)

Stateful Secondary
Procedure: ‘inactive’

Stateful Secondary
Procedure: ‘active’

Stateless Secondary
Procedure

Accept
BIND

UNBIND
PEER-ABORT

PEER-ABORT

Secondary Procedure
Activation

Secondary Procedure
Deactivation

Operation
Invocation

Figure 2-3: Service and Procedure States (Stateless Prime Procedure)

2.6.2 ASSOCIATION MANAGEMENT

Establishment and release of an association between the service user and the service provider
is handled by the Association Control procedure specified in 4.3. All other procedures rely
on the presence of such association and therefore establishment and release of the association
must be coordinated between the procedure instances within a service instance.

An association is established by means of the BIND operation (see 3.4), which is always
invoked by the service user. Before the BIND operation is completed, that is, the BIND
return is issued by the service provider, no further operation can be invoked. The only
exception to this rule is the PEER-ABORT operation, which can be invoked by the service
user if the BIND return is not received quickly enough. Once the association is established,
other procedures used by the service can be operated according to their defined protocol.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 2-15 February 2021

During the lifetime of the association, the prime procedure (instance) of the service instance
and the Association Control procedure instance must cooperate to determine the applicable
substate of the state ‘bound’ and the transitions between these states (see 2.6.1).

An association is released normally when an UNBIND operation is invoked by the service
user (the initiator) and accepted by the service provider (the responder). An association may
be aborted by either the service user or the service provider by means of the PEER-ABORT
operation. An association may also be aborted because of a failure in the underlying
communications system. Such failures are signaled to the local application entity by the
‘protocol abort’ event described in 4.3.3.1.11.5.

Conceptually, invocations of the operations UNBIND and PEER-ABORT will be received
by the Association Control procedure, which will

a) verify the validity of the event according to the defined protocol and react accordingly;

b) inform all other procedures of the event;

c) respond to the event as defined by the protocol, for example, by issuing an UNBIND
return; and

d) terminate the underlying communications connection, if applicable.

If a procedure needs to abort the association, for example, because of a protocol error, it
forwards this request to the Association Control procedure, which will invoke the PEER-
ABORT operation and inform all other procedures.

All procedures are expected to close down and release all resources associated with the
service instance when they are notified of the termination event.

When an association is released or aborted, no further operations can be exchanged between the
service user and the service provider. The systems may re-establish an association via a new BIND
operation if that is consistent with the service instance provision period. However, status information
from the prior association is not preserved unless specified differently by the service specification.

2.6.3 TECHNOLOGY SPECIFIC ASPECTS

This Recommended Standard defines building blocks for the specification of CSTSes.
Provision of a CSTS in a real system also requires a specification of how the service is
mapped to a communications service, such that all invocations and responses of the service
operations can be conveyed between the service user and the service provider. In order not
to restrict the applicability of service specifications based on this Recommended Standard to
a specific communications technology, as few assumptions as possible have been made about
the characteristics of the underlying communications service (see 1.3.1).

NOTE – While this Recommended Standard makes only a few assumptions on the
underlying communications service, reference [2] specifies a communications
service that is assumed to be used by default for CSTSes.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 2-16 February 2021

Elements of the CSTS interface between the service user and the service provider are specified
in this Recommended Standard in terms of the operations that the service implements. These
operations are realized by mapping the service operation invocations, acknowledgements, and
returns to PDUs that can be conveyed by means of the underlying communications service.
This Recommended Standard conceptualizes such mapping in two parts:

a) operation invocations, acknowledgements, and returns are mapped to CSTS PDUs
defined in annex F;

b) CSTS PDUs are conveyed by means of an underlying communications service.

Typically, one CSTS PDU corresponds to the invocation, acknowledgement, or return of an
operation. There is one exception in which multiple TRANSFER-DATA or PROCESS-
DATA invocations are deliberately buffered and subsequently mapped to a single CSTS
PDU (see 4.5.2.2.2.2 and 4.7.3.2.1). From the point of view of the service provider or
service user application, the interaction between the service user and service provider is in
terms of operations, but from the point of view of the application entities that implement the
CSTS protocol, what is exchanged are CSTS PDUs.

The mapping of CSTS PDUs to an underlying communications service is intentionally
outside the scope of this Recommended Standard. In order to achieve interoperability, the
service user and service provider must conform not only to the service specification based on
this Recommended Standard but also to an agreed-upon specification of the mapping of the
service to the underlying communications service. The specification of a mapping of the
service onto a particular communications service must address such points as

a) selection of communications network(s) to ensure connectivity;

b) compatible configuration of protocol stacks (e.g., timeout values);

c) specification of port identifiers and their translation onto the communications
technology; and

d) specification of security-related information.

Figure 2-4 illustrates a communications realization of a CSTS that results from such a
mapping. The specification of a suitable mapping for CSTS to the Transmission Control
Protocol (TCP) and the ASN.1 is provided in reference [2].

The procedures specified in section 4 each have their individual state tables, giving the
impression that the interaction between service user and service provider in the context of a
given procedure is mutually independent of any concurrently executing procedures.
However, this is not the case because all PDUs exchanged in the context of a given service
instance share the same communications channel. The consequence is that, should one
procedure create backpressure by not reading from the transport layer socket, this
backpressure affects all PDUs being exchanged in the context of the given service instance,
regardless of the procedure instance emitting the PDU.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 2-17 February 2021

CSTS Provider

CSTS
PDUs

CSTS User

Communications
Service

CSTS
Application

Process

CSTS
Application

Entity

Communications
Service

CSTS
Application

Process

CSTS
Application

Entity

Network
Connectivity

Figure 2-4: Communications Realization of a Cross Support Transfer Service

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 3-1 February 2021

3 COMMON OPERATIONS

3.1 OVERVIEW

This section specifies the operations that are used by the procedures defined in this
Recommended Standard. Subsection 3.2 and 3.3 specify behaviors that are generally
applicable to all operations. Subsections 3.4 through 3.13 specify individual operations that
are used by the procedures defined in this Recommended Standard.

3.2 GENERAL CONSIDERATIONS

3.2.1 COMMON OPERATION BEHAVIOR

NOTE – This Recommended Standard defines operations and procedures that are required
for specifying Cross Support Transfer Services (CSTSes) when such services
specify the behavior of the service providers. Regarding the service users,
assumptions may be made regarding the expected behavior, but no binding
specifications regarding the user behavior are provided. Subsections 3.2.1.1 to
3.2.1.3 specify invoker and responder behavior where the invoker may be either
the service user or the service provider. To the extent that the user is the invoker,
subsections 3.2.1.1 to 3.2.1.3 are to be understood to describe the expected user
behavior, but not to be a binding specification of the user behavior.

3.2.1.1 All invokers of confirmed operations shall implement a timer for the
acknowledgement, in the case of three-phase operations, or the return, in the case of two-
phase operations. In the case that the timer expires before the expected acknowledgement or
return is received, the invoker shall issue a PEER-ABORT with the diagnostic set to
‘response timeout’.

3.2.1.2 Each functional resource representing a CSTS instance shall have a configurable
response-timeout parameter the value of which determines the setting of the timers
specified in 1.6.3.2.7 k), for which the same setting is applicable to all confirmed operations
regardless of the operation being invoked by the service user or service provider.

3.2.1.3 On reception of the acknowledgement in the case of three-phase operations or the
return in the case of two-phase operations, the invoker of the corresponding confirmed
operation shall stop the timer.

NOTES

1 This issue of this Recommended Standard does not specify any confirmed operation
being invoked by the service provider. Therefore such a PEER-ABORT operation
will never be invoked by the service provider but it may be received from the service
user. Future issues of the Recommended Standard may include provider-invoked
confirmed operations. Also, certain CSTSes may add provider invoked confirmed
operations by means of extension (see 1.6.1.7.19).

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 3-2 February 2021

2 For all user-invoked confirmed operations (for example BIND and UNBIND) the
service provider may use the response-timeout parameter value to anticipate
how long it (the service provider) has to respond to the invocation of a confirmed
operation to avoid causing the service user to invoke a PEER-ABORT.

3.2.1.4 All acknowledgements and returns shall include a result parameter that indicates
whether the outcome of the operation was successful (result has the value ‘positive’) or
unsuccessful (result has the value ‘negative’).

3.2.1.5 If the result reported in an acknowledgement is ‘negative’, no return shall be
generated.

3.2.1.6 If result reported in an acknowledgement or return is ‘negative’, the
acknowledgement or return shall also include a diagnostic parameter, the value of which
is descriptive of the reason for the negative result.

3.2.1.7 For certain values, the diagnostic parameter shall be complemented by

a) a visible string whose value shall start with the diagnostic name identified in this
Recommended Standard or in the service definition using this Recommended Standard;
and

b) additional diagnostic information whenever required by this Recommended Standard.

NOTES

1 Possible values of the diagnostic parameter are listed in the specification of each
operation.

2 The visible string diagnostic is for troubleshooting purposes, in order to allow
implementers to add information to the diagnostic and to accommodate service-type
or implementation-specific information. The value of the string, apart from the
diagnostic name, shall be chosen by the implementers or defined in the CSTS
specification.

3 The presence or absence of a visible string complementing the diagnostic value is
specified in annex F.

3.2.1.8 The diagnostic parameter value may be extended by derived operations,
procedures and services to support dedicated diagnostic values.

3.2.1.9 Unless otherwise specified, all operation invocations, acknowledgements, and
returns defined in this Recommended Standard can be extended.

NOTE – The extension capability is not explicitly mentioned in the rest of the document
and is to be considered implicit for all operations.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 3-3 February 2021

3.2.2 PARAMETER TYPES

The types of all parameters shall conform to the abstract syntax specified in annex F.

NOTES

1 Some parameter types in annex F are chosen such that an extension is possible. For
example, the diagnostic parameter can be extended so that a service can define
its own diagnostic values.

2 The syntax specified in annex F ensures the possibility of extension by defining fields
that can be, whenever required, defined externally to the proposed syntax (e.g.,
operations extension).

3.2.3 PARAMETER CHECKING AND PDU VALIDATION

3.2.3.1 Validity checks shall be performed on the values of parameters associated with an
operation.

NOTE – Rules governing the validity of parameter values are included in the specification
of individual operations. General reasons for regarding a parameter value as
invalid are specified in the following paragraphs.

3.2.3.2 A parameter value shall be treated as invalid if it is outside the range or not in the
set of values permitted by the operation using the given parameter.

NOTE – A conforming implementation is capable of supporting the full range or set of
values as specified in annex F and applicable to the service using this
Recommended Standard.

3.2.3.3 A parameter value shall be treated as invalid if it is in conflict with the value of
another parameter in the same invocation.

NOTE – For example, the value of the start-time parameter in the invocation of an
operation is invalid if it is later than the value of the stop-time parameter.

3.2.3.4 If a parameter value is not valid, the operation shall not be performed and, for
confirmed operations, a report of the negative result shall be returned to the invoker.

3.2.3.5 While this Recommended Standard does not prescribe the sequence of checks for
the parameters, the implementer shall document the implemented sequence.

3.2.3.6 A PDU shall be treated as invalid if

a) it contains an unrecognized operation type or a parameter of the wrong type;

b) it is otherwise not decodable;

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 3-4 February 2021

c) the procedure identifier is not one of the specified service procedures identifiers;

d) the incoming PDU violates the procedure’s state table, that is, the PDU is not
permitted in the present procedure state;

e) the value of the invoke-id parameter is the same as the invoke-id value of
another operation still being performed; or

f) procedure-type-specific constraints apply that the incoming PDU violates.

NOTE – An example of such a constraint is the maximum number of PROCESS-
DATA invocations contained in the forward buffer PDU that the
Buffered Data Processing procedure is configured to accept (refer to
4.7.3.2.1.4).

3.2.3.7 In the case of an invalid PDU, the service provider shall abort the association using
a PEER-ABORT with the corresponding diagnostic value (see 3.6.2.2.1).

3.2.4 AUTHENTICATION

NOTE – Requirements for security depend on the application and the system environment
(e.g., whether closed or public networks are used or if access is only from
physically restricted areas). In many environments, security may be provided by
the communications service transparently to the application. This Recommended
Standard does not preclude the use of security features that are provided by the
communications service or the local environment, nor does it assume the
availability of such features.

3.2.4.1 The service shall provide the following options with respect to the level of
authentication of invocations and responses of operations:

a) ‘all’: all invocations, acknowledgments, and returns, except the invocation of PEER-
ABORT, shall be authenticated;

b) ‘bind’: only the BIND invocation and return shall be authenticated;

c) ‘none’: neither invocations nor responses shall be authenticated.

3.2.4.2 The UM function of the Earth User CSSS and the PM function of the Provider
CSSS shall agree on the level of authentication to be required for a given service instance
and shall configure the service user and service provider accordingly.

3.2.4.3 The UM function of the Earth User CSSS and the PM function of the Provider
CSSS shall agree on the algorithm used to generate and check credentials parameters and
shall make this algorithm known to the service user and service provider together with
associated parameters such as passwords or keys as necessary for the selected algorithm.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 3-5 February 2021

NOTES

1 The specification of the algorithms themselves is outside the scope of this
Recommended Standard. However, the SLE Internet Protocol for Transfer Services
(ISP1, reference [2]), which is the default underlying communication protocol for
CSTSes, specifies a particular algorithm for the generation of credentials. Any
implementation that uses ISP1 will use the credentials algorithm specified therein.

2 The initiator-identifier and responder-identifier parameters of
the BIND operation identify the service user and service provider and therefore the
applicable authentication level and algorithm necessary to generate and check
credentials.

3.2.4.4 For operations for which authentication is required by the terms of the agreement
between PM and UM of the CSSSes,

a) invocations shall include an invoker-credentials parameter to permit the
performer to authenticate the invocation; and

b) responses shall include a performer-credentials parameter to permit the
invoker to authenticate the response.

3.2.4.5 For operations for which authentication is not required, the invoker-
credentials and performer-credentials parameters should be set to the value
‘unused’ to signify that the invocation or response does not carry credentials.

3.2.4.5.1 An incoming invocation, return, or acknowledgment shall be ignored if the
credentials parameter cannot be authenticated when, by management arrangement,
credentials are required.

3.2.4.5.2 If an invocation is ignored, the operation shall not be performed, and a report of
the outcome shall not be returned to the invoker.

3.2.4.5.3 If a return is ignored, it shall be as if no report of the outcome of the operation has
been received.

3.2.5 INVOKE IDENTIFIER

3.2.5.1 To support applications that may need to invoke several operations concurrently,
the parameter invoke-id is specified for all operations.

NOTES

1 The invoke-id parameter allows the invoker to correlate a particular response to
the invocation that prompted it.

2 Confirmed operations may be blocking or non-blocking. The choice is to be specified
in the procedure definition. Unconfirmed operations are always non-blocking.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 3-6 February 2021

3.2.5.2 The value of the invoke-id parameter shall be an invoker-supplied arbitrary
integer value that shall be returned, unchanged, by the performer.

3.2.5.3 In case the value of the invoke-id parameter is the same as the invoke-id of
another operation that is still being performed within the context of the same service
instance, the service provider shall issue a PEER-ABORT.

3.2.5.4 To ensure that the service behaves in a predictable manner, the effects of operations
shall be as though the operations were performed in the order in which they were invoked.

3.2.6 BLOCKING AND NON-BLOCKING OPERATIONS

3.2.6.1 Invocation of an operation for the same procedure instance when a blocking
operation response is outstanding constitutes a protocol error and shall lead to the service
provider issuing a PEER-ABORT with the diagnostic parameter set to ‘protocol error’.

NOTE – After invoking a blocking operation, the invoker will invoke a PEER-ABORT
with the diagnostic parameter set to ‘response timeout’ if the response to the
previously invoked blocking operation is not received in good time (see
3.6.2.2.1.3 g)).

3.2.6.2 After invoking an NB operation, invocation of another operation for the same
procedure instance without waiting for the response from the first invocation is allowed.

3.2.6.3 Compliance with this Recommended Standard does not require the performer to
process invocations concurrently; however, the performer must accept invocations from a
non-blocking invoker and buffer and serialize them by local means not visible externally.

3.2.7 TIME

The time reference for all parameters containing a time value shall be based on Coordinated
Universal Time (UTC).

NOTE – The type of all time parameters is specified in annex F.

3.3 STANDARD OPERATION HEADER

3.3.1 BEHAVIOR

3.3.1.1 All operation invocations, except the PEER-ABORT invocation, shall be defined
with a common header containing the parameters specified in 3.3.2.

3.3.1.2 All operation responses shall be defined with a common header containing the
parameters specified in 3.3.2.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 3-7 February 2021

3.3.1.3 A confirmed operation may be defined with an acknowledgement and a return or
with a return only.

NOTE – While the acknowledgement and return PDUs may use the same syntax, the
invoker of the operation can differentiate the acknowledgement and return PDUs
by reading the tag at the beginning of the PDU (see annex F).

3.3.2 INVOCATION, ACKNOWLEDGEMENT AND RETURN PARAMETERS

3.3.2.1 General

Table 3-1 identifies the parameters that appear in the invocation, acknowledgement, and
return of the Standard Confirmed Operation Header. Table 3-2 identifies the parameters that
appear in the invocation of the Standard Unconfirmed Operation Header. The following
subsections specify each of these parameters.

Table 3-1: Standard Confirmed Operation Header Parameters

Parameters Invocation Acknowledgement Return
invoker-credentials M
performer-credentials M M
invoke-id M M M
procedure-name M
result M M
diagnostic C C

Table 3-2: Standard Unconfirmed Operation Header Parameters

Parameter Invocation
invoker-credentials M
invoke-id M
procedure-name M

3.3.2.2 invoker-credentials

The invoker-credentials parameter shall provide information that enables the
performer to authenticate the invocation (see 3.2.4). If authentication is not required, the
invoker-credentials parameter shall be set to ‘unused’.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 3-8 February 2021

3.3.2.3 performer-credentials

The performer-credentials parameter shall provide information that enables the
invoker to authenticate the response from the performance of the invoked operation (see
3.2.4). If authentication is not required, the performer-credentials parameter shall
be set to ‘unused’.

3.3.2.4 invoke-id

3.3.2.4.1 The value of the invoke-id parameter shall be an invoker-supplied arbitrary
integer value (see 3.2.5).

NOTE – The presence of the invoke-id in the standard unconfirmed operation header
is required to maintain commonality with the confirmed operation.

3.3.2.4.2 The performer shall insert unchanged the invoker-supplied value of the invoke-
id parameter in each corresponding operation response.

3.3.2.5 procedure-name

3.3.2.5.1 The procedure-name shall consist of

a) the procedure-type (e.g., Buffered Data Delivery);

b) the procedure role:

1) the role of the Association Control procedure is always association control; as
there is only one instance of the Association Control procedure, the procedure
role parameter is set to the ‘associationControl’ value;

2) the role of any other procedure is either prime procedure instance or secondary
procedure instance;

c) for a prime procedure, the ‘primeProcedure’ value;

NOTE – There is only a single instance of any prime procedure; consequently, the
procedure instance number parameter in this case is set to the
‘primeProcedure’ value.

d) for secondary procedures, the procedure instance number parameter.

3.3.2.5.2 The procedure-type shall uniquely identify the type of the procedure.

3.3.2.5.3 The value of the procedure-name shall be the same for all operations used in
the context of that procedure instance.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 3-9 February 2021

3.3.2.5.4 The procedure instance number in the procedure-name of secondary
procedures shall be set to an incrementing number starting with 1. The value of the procedure
instance number shall represent the count of the instances of the given secondary procedure
type within one service instance.

NOTE – If there is more than one instance of the prime procedure type, only one instance
is considered the prime procedure; the other instances are considered secondary
procedures.

EXAMPLE – A service has three instances of the procedure type ‘x’ and three instances of
the procedure type ‘y’. One of the three procedure instances of ‘x’ is prime:

a) prime procedure ‘x’ instance number: not applicable;

b) secondary procedure ‘x’ instance numbers: 1 and 2;

c) secondary procedure ‘y’ instance numbers: 1, 2, and 3.

3.3.2.6 result

3.3.2.6.1 Definition

3.3.2.6.1.1 The result parameter of an operation acknowledgment shall specify the
result of the related invocation and shall contain one of the following values:

a) ‘positive’—the invocation has been accepted by the performer;

b) ‘negative’—the invocation has not been accepted by the performer.

3.3.2.6.1.2 The result parameter of an operation return shall specify the result of an
invocation and shall contain one of the following values:

a) ‘positive’—the operation has been performed by the performer;

b) ‘negative’—the operation has not been performed by the performer.

3.3.2.6.2 ‘positive’

All procedures shall have the possibility to extend positive responses with additional
parameters, the names, types, and values of which shall depend on the procedure using that
operation.

3.3.2.6.3 ‘negative’

If result is ‘negative’, a diagnostic parameter shall be present in the response.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 3-10 February 2021

3.3.2.7 diagnostic

3.3.2.7.1 If present (see 3.3.2.6.3), the diagnostic parameter value shall be one of the
following:

a) ‘invalid parameter value’—the value of one of the parameters provided is invalid
(i.e., is not within the specified range); the diagnostic shall be complemented
with the name of the invalid parameter (see 3.2.3.2);

b) ‘conflicting values’—the value of one of the parameters is in conflict with the value
of another parameter in the invocation (see 3.2.3.3);

c) ‘unsupported option’—one or more of the options required by the invocation are not
supported, for example, an optional procedure of a CSTS is not part of the given
CSTS provider implementation;

d) ‘other reason’—the reason for rejection of the operation will have to be found by
other means.

3.3.2.7.2 An implementation using the diagnostic value ‘other reason’ in a negative
acknowledgement or negative return shall document under which conditions this
diagnostic value is used.

3.3.2.7.3 All procedures shall have the possibility to extend ‘negative’ with additional
parameters, the names, types, and values of which shall depend on the procedure using that
operation. In particular, additional values of the diagnostic parameter may be defined.

3.4 BIND (CONFIRMED)

3.4.1 BEHAVIOR

NOTE – Establishment of an association between service user and service provider can
only be initiated by the service user by means of invoking the BIND operation.

3.4.1.1 The service provider shall return a report of the outcome of the performance of the
BIND operation to the service user unless the BIND invocation is ignored because of invalid
credentials (see 3.2.4).

3.4.1.2 The report sent by the service provider shall be a negative return if any of the
conditions specified in 3.4.2.3.1 are met; otherwise a positive return shall be sent.

3.4.2 INVOCATION AND RETURN PARAMETERS

3.4.2.1 General

The parameters of the BIND operation shall be present in the invocation and return as
specified in table 3-3.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 3-11 February 2021

Table 3-3: BIND Operation Parameters

Parameters Invocation Return

Standard Operation Header (confirmed) M M

initiator-identifier M

responder-identifier M

responder-port-identifier M

service-type M

version-number M

service-instance-identifier M

3.4.2.2 Operation Parameters Definitions

3.4.2.2.1 Standard Confirmed Operation Header

This operation shall use the Standard Confirmed Operation Header (see 3.3).

3.4.2.2.2 initiator-identifier

3.4.2.2.2.1 The initiator-identifier parameter shall identify the authority on
whose behalf the application entity is initiating an association.

3.4.2.2.2.2 The initiator-identifier parameter shall be a service management
parameter.

3.4.2.2.3 responder-identifier

3.4.2.2.3.1 The responder-identifier parameter shall identify the authority on
whose behalf the responding application is acting.

3.4.2.2.3.2 The responder-identifier parameter shall be a service management
parameter.

3.4.2.2.4 responder-port-identifier

3.4.2.2.4.1 The responder-port-identifier parameter shall specify the port
identifier of the responding application entity with which the initiator seeks to establish an
association.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 3-12 February 2021

NOTE – The responder-port-identifier parameter also permits the use of particular
kinds of gateways for which, because of different communications technologies at the
peer entities, establishing a direct end-to-end communications channel is not possible
or for which a direct end-to-end channel is not desired for security reasons. The
responder-port-identifier parameter is used by such gateways to complete
the association with the responding application entity, but it is not intended to be used
by the responding application entity itself. Beyond this statement, the behavior of such
gateways is outside the scope of this Recommended Standard.

3.4.2.2.4.2 The responding application entity shall ignore the value of the responder-
port-identifier parameter for the purpose of determining the validity of the invocation.

3.4.2.2.4.3 The responder-port-identifier parameter shall be a service
management parameter.

NOTES

1 The value of the responder-port-identifier parameter is a logical name that
can be translated into the technology-specific addressing information required to
establish a connection with the responder using the agreed-upon communications
service. The CSTS application entity on the service user side needs to know this
parameter so that it is properly populated for use by the port-designation mechanism of
the underlying communications service. On the service provider side, the application
entity completely ignores this parameter. However, it needs to be known on the
provider side for the configuration of the underlying communications service.

2 PM and UM of the CSSSes must have previously agreed on the responder-
port-identifier and its translation to the required communications-technology
specific information that is applicable to a particular instance of service. The
parameter value can conveniently be used beyond the port-designation mechanism as
a pointer to a set of configuration parameters of the underlying communications
service, such as the size of transmit and receive buffers.

3 The responder-port-identifier parameter is included in the BIND invocation
for selecting the communications port on the responder side or to support its possible use
by particular kinds of gateways. The responding application entity ignores its value.

4 In case the association between service user and service provider is established via a
gateway and the value of the responder-port-identifier parameter is
incorrectly set, the gateway will not be able to relay the BIND invocation to the target
responding application entity. Likewise, if because of an incorrectly set
responder-port-identifier parameter the target application entity is not
listening on the correct communications port for an incoming BIND invocation, the
BIND invocation will not be noticed and the application entity will not issue a BIND
return. The lack of a return for the BIND operation is expected to cause the user to
abort the association by invoking the PEER-ABORT operation with the
diagnostic parameter set to ‘response timeout’ (see 3.6.2.2.1.3 g)).

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 3-13 February 2021

3.4.2.2.5 service-type

The service-type parameter shall uniquely identify the type of service that will be
provided if the BIND operation succeeds.

3.4.2.2.6 version-number

The version-number parameter shall identify the version number of the service
specification that is to govern this association if the BIND operation succeeds.

3.4.2.2.7 service-instance-identifier

3.4.2.2.7.1 The service-instance-identifier parameter shall uniquely identify
this service instance within the scope of the service-providing CSSS.

3.4.2.2.7.2 The service-instance-identifier shall consist of the following
sequence:

a) an identifier of the spacecraft being supported by the given CSTS instance;

b) an identifier of the facility where the CSTS provider is located;

c) an identifier of the CSTS type;

d) the service instance number.

3.4.2.2.7.3 The ordering of the elements constituting the service-instance-
identifier shall be significant. The order shall be: spacecraft identifier first, followed by
the facility identifier, followed by the transfer service type, and ending with the service
instance number.

3.4.2.2.7.4 The elements of the service-instance-identifier, being identifiers
(spacecraft, facility, CSTS type), shall be defined as OIDs, while the service instance number
shall be a positive integer.

3.4.2.2.7.5 The spacecraft supported by the given CSTS instance shall be specified by means
of the spacecraft OID assigned in the CCSDS Spacecraft Registry (see H2.5).

3.4.2.2.7.6 The ‘facility’ where the CSTS provider is located shall be specified by means of
an OID assigned in the CCSDS Service Site and Aperture Registry (see H2.5).

3.4.2.2.7.7 The CSTS type shall be identified by means of the OID assigned to the service
type as specified in D5.

3.4.2.2.7.8 The service-instance-identifier parameter shall be a service
management parameter.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 3-14 February 2021

NOTES

1 For all OIDs being elements of the service-instance-identifier
parameter, SANA maintains registries in which these OIDs can be looked up.

2 For the convenience of human users, these registries may specify names in the form
of strings associated with the various OIDs. However, these strings are not part of the
BIND invocation PDU. They are used in the following example only to illustrate the
elements of the service-instance-identifier parameter.

EXAMPLE:
– Spacecraft Identifier: ‘XenoSat’
– Facility Identifier: ‘DSNDSS5’
– CSTS type: ‘monitoredData’
– Service Instance Number: 1

3.4.2.2.7.9 The service instance number shall be identical to the Functional Resource
Instance Number of the Functional Resource Name assigned to the service instance.

3.4.2.2.8 BIND Invocation Syntax

The type BindInvocation, as defined in F3.5, shall define the syntax of the BIND
invocation PDU and its parameters.

3.4.2.2.9 BIND Return Syntax

The type BindReturn, as defined in F3.5, shall define the syntax of the BIND return PDU
and its parameters.

3.4.2.3 diagnostic Parameter Extension Value Definitions and Syntax

3.4.2.3.1 If a negative BIND return is sent, one of the diagnostic values specified in
3.3.2.7 or one of the following diagnostic values shall be used:

a) ‘access denied’—the value of the initiator-identifier parameter is not
recognized by the service provider (the value does not identify an authorized service
user of any service instance known to the service provider);

b) ‘service type not supported’—the value of the service-type parameter of the
BIND invocation does not identify a service type supported by the service provider;

c) ‘version not supported’—the service type version is not supported;

d) ‘no such service instance’—the requested service instance is unknown to the service
provider;

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 3-15 February 2021

e) ‘already bound’—the service instance is already bound via a different association;

f) ‘service instance not accessible to this initiator’—the service user identified by the
initiator-identifier parameter of the BIND invocation does not match the
authorized initiator for the service instance identified by the service-instance-
identifier parameter;

g) ‘inconsistent service type’—the value of the service-type parameter of the
BIND invocation is not a valid one, or the value of the service-type parameter
does not match the service type of the service instance identified by the service-
instance-identifier parameter;

h) ‘out of service’—production-status is ‘halted’ (see annex B).

3.4.2.3.2 The type AssocBindDiagnosticExt, as defined in F3.5, shall specify the
syntax of the diagnostic parameter of the BIND return, extended as listed in 3.4.2.3.1.

3.5 UNBIND (CONFIRMED)

3.5.1 BEHAVIOR

NOTE – Release of a previously established association between service user and service
provider can only be initiated by the service user by means of invoking the
UNBIND operation.

3.5.1.1 In case the service provider cannot accept the UNBIND invocation (i.e., ‘duplicate
invoke ID’), it shall abort the association by invoking PEER-ABORT.

3.5.1.2 Otherwise, the service provider shall return a positive report of the outcome of the
performance of the UNBIND operation to the service user.

3.5.2 INVOCATION AND RETURN PARAMETERS

3.5.2.1 General

The parameters of the UNBIND operation shall be present in the invocation and return as
specified in table 3-4.

Table 3-4: UNBIND Operation Parameters

Parameters Invocation Return
Standard Operation Header (confirmed) M M

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 3-16 February 2021

3.5.2.2 Operation Parameters Definitions

3.5.2.2.1 Standard Confirmed Operation Header

This operation shall use the Standard Confirmed Operation Header (see 3.3) without extension.

3.5.2.2.2 UNBIND Invocation Syntax

The type UnbindInvocation, as defined in F3.5, shall specify the syntax of the
UNBIND invocation PDU and its parameters.

3.5.2.2.3 UNBIND Return Syntax

The type UnbindReturn, as defined in F3.5, shall specify the syntax of the UNBIND
return PDU and its parameters.

3.6 PEER-ABORT (UNCONFIRMED)

3.6.1 BEHAVIOR

NOTE – The service user can abort the association between service user and service
provider by invoking the PEER-ABORT operation. The conditions under which
this can happen are listed in 3.6.2.2.1.3.

3.6.1.1 The service provider shall invoke the PEER-ABORT operation to terminate
unconditionally an association between a service user and a service provider if any of the
conditions listed in 3.6.2.2.1.2 are met.

3.6.1.2 The PEER-ABORT operation shall not be extended.

3.6.1.3 On reception of a PEER-ABORT invocation, the service provider shall flush all
queued data.

3.6.2 INVOCATION PARAMETERS

3.6.2.1 The parameters of the PEER-ABORT operation shall be present in the invocation
as specified in table 3-5.

Table 3-5: PEER-ABORT Operation Parameters

Parameters Invocation
diagnostic M

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 3-17 February 2021

3.6.2.2 Operation Parameters Definitions

3.6.2.2.1 diagnostic

3.6.2.2.1.1 The diagnostic parameter shall specify why the PEER-ABORT is being
invoked.

3.6.2.2.1.2 The value of the diagnostic parameter in a PEER-ABORT invocation sent
by the service provider shall be one of the following:

a) ‘operational requirement’—the local system had to terminate the association to
accommodate some other operational need;

b) ‘protocol error’—the local application detected an error in the sequencing of service
operations;

c) ‘communications failure’—the communications service on the other side of a
gateway was disrupted;

NOTE – The ‘communications failure’ diagnostic is included in the PEER-
ABORT invocation to support its possible use by particular kinds of
gateways. It is used by such gateways to report on a communications
failure with the peer application entity. It is not intended to be used by the
peer application entity itself. Beyond this statement, the behavior of such
gateways is outside the scope of this Recommended Standard.

d) ‘encoding error’—the local application detected an error in the encoding of one or
more operation parameters or did not recognize that the operation or the data is badly
formatted (e.g., one of the service instance identifier fields is missing);

e) ‘response timeout’—the local application detected that the acknowledgement from a
three-phase operation or the return from a two-phase operation was not received
within the time period specified by the response-timeout configuration
parameter (see 3.2.1.2). This diagnostic is used only when the service uses one or
more confirmed operations that are invoked by the service provider;

NOTE – This issue of this Recommended Standard does not specify any
confirmed operation being invoked by the service provider. Therefore a
‘response timeout’ PEER-ABORT operation cannot be invoked by the
service provider of any service that uses only procedures that are directly
adopted from this Recommended Standard. However, future issues of this
Recommended Standard may include provider-invoked confirmed
operations. Also, certain CSTSes may add provider-invoked confirmed
operations by means of extension (see 1.6.1.7.19). The ‘response
timeout’ diagnostic is applicable to any provider-invoked confirmed
operation that might be defined either in a future issue of this
Recommended Standard or in CSTS specifications that are derived from
this Recommended Standard.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 3-18 February 2021

f) ‘end of service instance provision period’—the service provider detected that the
service instance provision period has ended and the service user has not invoked the
UNBIND operation;

g) ‘duplicate invoke ID’—the value of the invoke-id parameter is the same as the
invoke-id value of another operation still being performed;

h) ‘invalid procedure name’—the procedure-name of the received operation
contains an unknown procedure type, or the procedure role does not match the
expected one, or the procedure-name contains an unknown procedure instance;

NOTE – If a CSTS does not implement an optional procedure, invocation of
operations of such an unimplemented procedure will not result in the
invocation of PEER-ABORT (refer to 3.3.2.7.1 c)).

i) ‘unrecognized operation or parameter type’—the operation type of the received
operation does not match any of the defined types, or one of the parameter types does
not match any of the defined types;

j) ‘other reason’—the local application detected an unspecified error during the
processing of one or more operations.

3.6.2.2.1.3 The service provider shall handle PEER-ABORT invocations sent by the
service user containing one of the following diagnostic values:

NOTE – This Recommended Standard does not specify how the service provider shall
handle a PEER-ABORT diagnostic value. It may, for example, be displayed
to a local operator and/or written to a local log file.

a) ‘access denied’—a service provider with an identity as presented in the
responder-identifier parameter of the BIND return is not known to the
service user;

b) ‘unexpected responder ID’—the value of the responder-identifier parameter
in the BIND return does not match the identity of the authorized service provider for
this service instance as specified by service management;

c) ‘operational requirement’—the user system had to terminate the association to
accommodate some other operational need;

d) ‘protocol error’—the user application detected an error in the sequencing of service
operations;

e) ‘communications failure’—the communications service on the other side of a
gateway was disrupted;

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 3-19 February 2021

NOTE – The ‘communications failure’ diagnostic is included in the PEER-
ABORT invocation to support its possible use by particular kinds of
gateways. It is used by such gateways to report on a communications
failure with the peer application entity. It is not intended to be used by the
peer application entity itself. Beyond this statement, the behavior of such
gateways is outside the scope of this Recommended Standard.

f) ‘encoding error’—the user application detected an error in the encoding of one or
more operation parameters or did not recognize the operation or the data is badly
formatted (e.g., one of the service-instance-identifier fields is missing);

g) ‘response timeout’—the user application detected that the acknowledgement from a
three-phase operation or the return from a two-phase operation was not received
within the expected time period;

NOTE – The user is expected to use the value of the response-timeout
configuration parameter (see 3.2.1.2) to determine when a response is
overdue.

h) ‘unsolicited invoke-id’—the user application received a response with an invoke-
id that does not match the invoke-id of any of the operations for which a
response is pending;

i) ‘invalid procedure name’—the procedure-name of the received operation
contains an unknown procedure type, or the procedure role does not match the
expected one, or the procedure-name contains an unknown procedure instance;

j) ‘unrecognized operation or parameter type’—the operation type of the received
operation does not match any of the defined types, or one of the parameter types does
not match any of the defined types;

k) ‘other reason’—the user application detected an unspecified error during the
processing of one or more operations.

NOTE – An implementation using the PEER-ABORT diagnostic value ‘other
reason’ shall document under which conditions this diagnostic value
is used (see 3.3.2.7.2).

3.6.2.2.1.4 A service-type-specific derived or service-original procedure shall have the
capability to specify further diagnostic values within the constraints specified in F3.5.
These values need to be documented in the specification of that service type.

3.6.2.2.2 PEER-ABORT Invocation Syntax

The type PeerAbortInvocation, as defined in F3.5, shall specify the syntax of the
PEER-ABORT invocation PDU and its parameters.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 3-20 February 2021

3.7 START (CONFIRMED)

3.7.1 BEHAVIOR

NOTE – The service user can start the activities of a stateful procedure by invoking the
START operation of that procedure.

3.7.1.1 The activity to be started shall be defined by the procedure using the START
operation.

3.7.1.2 The service provider shall return a report of the outcome of the performance of the
START operation to the service user.

3.7.1.3 After a successful START, the service provider shall

a) transition the procedure to the state ‘active’; and

b) perform the activities associated with the procedure using the operation.

3.7.1.4 After an unsuccessful START, the service provider shall remain in procedure state
‘inactive’.

3.7.2 INVOCATION AND RETURN PARAMETERS

3.7.2.1 General

The parameters of the START operation shall be present in the invocation and return as
specified in table 3-6.

Table 3-6: START Operation Parameters

Parameters Invocation Return

Standard Operation Header (confirmed) M M

3.7.2.2 Operation Parameters Definitions

3.7.2.2.1 Standard Confirmed Operation Header

This operation shall use the Standard Confirmed Operation Header (see 3.3).

3.7.2.2.2 START Invocation Syntax

The type StartInvocation, as defined in F3.4, shall specify the syntax of the START
invocation PDU and its parameters.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 3-21 February 2021

3.7.2.2.3 START Return Syntax

The type StartReturn, as defined in F3.4, shall specify the syntax of the START return
PDU and its parameters.

3.7.2.3 diagnostic Parameter Extension Value Definitions and Syntax

3.7.2.3.1 If a negative START return is sent, one of the diagnostic values specified in
3.3.2.7 or one of the following diagnostic values shall be used:

a) ‘unable to comply’—the service provider is unable to activate the procedure at this
time because of a fault affecting the service;

b) ‘out of service’—the service provider has been taken out of service for an indefinite
period by management action (i.e., production-status is ‘halted’).

3.7.2.3.2 The type StartDiagnosticExt, as defined in F3.4 shall specify the syntax of
the diagnostic parameter of the START return, extended as listed in 3.7.2.3.1.

3.8 STOP (CONFIRMED)

3.8.1 BEHAVIOR

NOTE – The service user can stop the activities of a stateful procedure by invoking the
STOP operation of that procedure.

3.8.1.1 The activity to be stopped shall be defined by the procedure using the STOP
operation.

NOTE – Within the constraints of the service instance provision period, the service user
may re-enable the activity by again invoking the START operation.

3.8.1.2 The service provider shall provide a report of the outcome of the performance of
the STOP operation to the service user.

3.8.1.3 After a successful STOP, the service provider shall

a) stop performing its activities; and

b) transition the procedure to the state ‘inactive’.

3.8.1.4 After an unsuccessful STOP, the service provider shall

a) continue performing its activities; and

b) remain in procedure state ‘active’.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 3-22 February 2021

3.8.2 INVOCATION, RETURN, AND PARAMETERS

3.8.2.1 General

The parameters of the STOP operation shall be present in the invocation and return as
specified in table 3-7.

Table 3-7: STOP Operation Parameters

Parameters Invocation Return

Standard Operation Header (confirmed) M M

3.8.2.2 Operation Parameters Definitions

3.8.2.2.1 Standard Confirmed Operation Header

This operation shall use the Standard Confirmed Operation Header (see 3.3) without extension.

3.8.2.2.2 STOP Invocation Syntax

The type StopInvocation, as defined in F3.4, shall specify the syntax of the STOP
invocation PDU and its parameters.

3.8.2.2.3 STOP Return Syntax

The type StopReturn, as defined in F3.4, shall specify the syntax of the STOP return PDU
and its parameters.

3.9 TRANSFER-DATA (UNCONFIRMED)

3.9.1 BEHAVIOR

The service provider shall invoke the TRANSFER-DATA operation to deliver data units to
the service user.

3.9.2 INVOCATION AND PARAMETERS

3.9.2.1 General

The parameters of the TRANSFER-DATA operation shall be present in the invocation as
specified in table 3-8.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 3-23 February 2021

Table 3-8: TRANSFER-DATA Operation Parameters

Parameters Invocation
Standard Operation Header (unconfirmed) M
generation-time M
sequence-counter M
data M

3.9.2.2 Operation Parameters Definitions

3.9.2.2.1 Standard Confirmed Operation Header

This operation shall use the Standard Unconfirmed Operation Header (see 3.3) without
extension.

3.9.2.2.2 generation-time

The generation-time parameter shall contain the UTC time at which the data unit was
generated.

NOTE – The meaning of data generation can be understood only in the context of the
service defining the data to be transferred.

3.9.2.2.3 sequence-counter

3.9.2.2.3.1 For each instance of a procedure that uses the TRANSFER-DATA operation,
the service provider shall set the sequence-counter parameter of the first data unit due
for transmission to 0 after acceptance of the START operation for that procedure instance.

3.9.2.2.3.2 For each instance of a procedure that uses the TRANSFER-DATA operation,
the sequence-counter parameter shall be incremented with each data unit after the first
one that the service provider transmits to the service user using that procedure instance.

NOTE – The purpose of the sequence-counter is to give the service user a mechanism
for checking the continuity of the data transmitted by the service provider.

3.9.2.2.3.3 When the maximum value of the counter is reached, the sequence-
counter parameter shall be reset to 0.

3.9.2.2.4 data

3.9.2.2.4.1 The value of the data parameter is the data unit generated.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 3-24 February 2021

3.9.2.2.4.2 The data parameter shall be either of the type OCTET STRING, or the type
shall be specified as an extension.

3.9.2.2.4.3 A procedure using this operation shall

a) refine (i.e., specify) the format and the semantics of the octet string in the data
parameter; or

b) extend the operation by defining the structure and the semantics of the extension field
in the data parameter.

3.9.2.2.5 TRANSFER-DATA Invocation Syntax

The type TransferDataInvocation, as defined in F3.4, shall specify the syntax of the
TRANSFER-DATA invocation PDU and its parameters.

3.10 PROCESS-DATA (UNCONFIRMED / CONFIRMED)

3.10.1 BEHAVIOR

NOTE – The service user can transfer data to the service provider for further processing
by invoking the PROCESS-DATA operation.

3.10.2 INVOCATION, RETURN, AND PARAMETERS

3.10.2.1 General

The parameters of the PROCESS-DATA operation shall be present in the invocation as
specified in table 3-9, in which a procedure using this operation shall specify if the
unconfirmed variant or the confirmed variant is applied.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 3-25 February 2021

Table 3-9: PROCESS-DATA Operation Parameters

Parameters Invocation Return
(optional)

Standard Operation Header (unconfirmed or
confirmed) M M

data-unit-id M

data M

3.10.2.2 Operation Parameters Definitions

3.10.2.2.1 Standard Unconfirmed Operation Header

If the procedure using this operation opts for the unconfirmed variant of the PROCESS-DATA
operation, the operation shall use the Standard Unconfirmed Operation Header (see 3.3).

3.10.2.2.2 Standard Confirmed Operation Header

If the procedure using this operation opts for the confirmed variant of the PROCESS-DATA
operation, the operation shall use the Standard Confirmed Operation Header (see 3.3).

3.10.2.2.3 data-unit-id

The data-unit-id parameter value, defined to be of the type IntUnsigned, can be
freely chosen by the service user. The service provider shall copy this parameter into the
respective notifications reporting on the outcome of the processing of the data unit.

NOTE – Notifications can only be unambiguously associated with a specific data unit if
the service user ensures that the data-unit-id parameter values of all data
units already sent to the service provider (but of which processing did not yet
complete or abort) are unique. One simple way of achieving uniqueness of the
data-unit-id values is using a counter that is incremented by one for each
data unit sent to the service provider.

3.10.2.2.4 data

3.10.2.2.4.1 The data parameter shall contain the data to be transferred from the service
user to the service provider and to be subsequently processed by the service provider.

3.10.2.2.4.2 The data parameter shall be either of the type OCTET STRING, or the type
shall be specified as an extension.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 3-26 February 2021

3.10.2.2.4.3 A procedure using this operation shall

a) refine (i.e., specify) the format and the semantics of the octet string in the data
parameter; or

b) extend the operation by defining the structure and the semantics of the extension field
in the data parameter.

3.10.2.2.5 PROCESS-DATA Invocation Syntax

The type ProcessDataInvocation, as defined in F3.4, shall specify the syntax of the
TRANSFER-DATA invocation PDU and its parameters.

3.10.2.2.6 PROCESS-DATA Return Syntax

The type ProcessDataReturn, as defined in F3.4, shall specify the syntax of the
TRANSFER-DATA return PDU and its parameters. It only applies if the procedure using the
PROCESS-DATA operation has opted for the confirmed variant of this operation.

3.11 NOTIFY (UNCONFIRMED)

3.11.1 BEHAVIOR

The service provider shall invoke the NOTIFY operation to notify the service user of the
occurrence of an event of interest to the service user.

NOTE – Notification of events may be of value to the service user in understanding
specific service provider behavior, such as an interruption in data delivery.

3.11.2 INVOCATION AND PARAMETERS

3.11.2.1 General

The parameters of the NOTIFY operation shall be present in the invocation, as specified in
table 3-10.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 3-27 February 2021

Table 3-10: NOTIFY Operation Parameters

Parameters Invocation
Standard Operation Header (unconfirmed) M
event-time M

event-name M

event-value M

3.11.2.2 Operation Parameters Definitions

3.11.2.2.1 Standard Confirmed Operation Header

This operation shall use the Standard Unconfirmed Operation Header (see 3.3) without extension.

3.11.2.2.2 event-time

The event-time parameter shall contain the UTC time at which the event occurred.

3.11.2.2.3 event-name

3.11.2.2.3.1 The event-name is in the form of an Event Name, as defined in E5; it
consists of the Event Identifier defined for the event being notified and either the Functional
Resource Name of the Functional Resource Instance triggering the event or the
procedure-name of the procedure that issues the notification.

3.11.2.2.3.2 This operation shall define the following service-production-related published
events:

a) ‘production status change’ (event-name)—the status of service production has
changed (see annex B). For any CSTS type this event is specified as part of the
Functional Resource that represents the CSTS instance. The associated event-
value shall report the production-status parameter value of that Functional
Resource that applied after the ‘production status change’ event had triggered.

b) ‘production configuration change’ (event-name)—at least one parameter
controlling the configuration of service production has been changed. For any CSTS
type this event is specified as part of the Functional Resource that represents the
CSTS instance. Unless otherwise specified by the procedure using the operation, the
associated event-value shall be set to ‘empty’.

3.11.2.2.3.3 The Published Identifiers for the Event Names of the above listed events are
specified by the Functional Resource that represents the affected service instance.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 3-28 February 2021

3.11.2.2.3.4 The events defined in 3.11.2.2.3.2 shall be transferred with the Functional
Resource Name of the Functional Resource Instance triggering the events, that is, the
Functional Resource Instance representing the CSTS instance of which the production-
status parameter changed or that detected and reported that the production configuration
changed.

3.11.2.2.3.5 Procedures may require that the occurrence of events related to the procedure be
notified; such a procedure shall specify the Published Identifier for each of these events as
well as the event-value associated with the given event.

3.11.2.2.3.6 Events of the kind addressed in 3.11.2.2.3.5 shall be transferred with the
procedure-name of the procedure triggering the events.

3.11.2.2.3.7 A derived procedure that inherits one or more procedure related events from a
parent procedure shall notify the event by using the Published Identifier defined for this
event by the parent procedure.

3.11.2.2.4 event-value

3.11.2.2.4.1 The event-value allows the notification to optionally carry additional
information in the form of the type SequenceOfQualifiedValue as defined in F3.3 or
in the form of an extension.

3.11.2.2.4.2 In case a derived procedure inherits one or more procedure related events, the
derived procedure shall specify for each of these events the associated event-value
parameter, regardless of the event-value specification given in the parent procedure.

3.11.2.2.4.3 The event-value of the ‘production status change’ event shall report the
production-status parameter value of the service instance that notifies the ‘production
status change’ event. The first part of the path specifying the type to be used is
‘NotifyInvocation’: ‘eventValue’: ‘EventValue’: ‘qualifiedValues’:
‘SequenceOfQualifiedValue’: ‘SEQUENCE OF QualifiedValue’, where this sequence has
the length 1. The second part of the path is ‘QualifiedValue’: ‘valid’: ‘TypeAndValue’:
‘Embedded’: ‘EMBEDDED PDV’, where the PDV carries either (a) the ASN.1 type
‘ProductionStatus’, when the service directly adopts the production status values listed in
table B-1, or (b) a service-specific ASN.1 type that modifies the standard ‘ProductionStatus’
type with service-specific refinements and/or substates (see 2.2.2.2). The standard
‘ProductionStatus’ ASN.1 type and all service-specific production status ASN.1 types (if
any) are specified in SANA registry https://sanaregistry.org/r/functional_resources.

3.11.2.2.5 NOTIFY Invocation Syntax

The type NotifyInvocation, as defined in F3.4, shall specify the syntax of the NOTIFY
invocation PDU and its parameters.

https://sanaregistry.org/r/functional_resources/

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 3-29 February 2021

3.12 GET (CONFIRMED)

3.12.1 BEHAVIOR

NOTE – The service user can retrieve the values of specific parameters by invoking the
GET operation.

3.12.1.1 The service provider shall have the capability to deliver to the service user individual
parameters or a set of parameters represented by a list of Parameter Labels (see annex E).

NOTE – The list of Parameter Labels to be retrieved may be a list explicitly named in the
invocation or a default list to be specified by the procedures or services using this
operation.

3.12.1.2 The GET invocation is valid if it meets any one of the following conditions:

a) if the list-of-parameters parameter is ‘empty’, signifying the selection of the
default list of Parameter Labels, and if such a default list has been established;

b) if the list-of-parameters parameter contains one parameter list name for a list
of Parameter Labels that is contained in the set of label lists that has been established
for the service for use by the GET operation;

c) if the list-of-parameters parameter contains one Functional Resource Type
that is associated with the service instance that executes the procedure that contains
the GET operation;

d) if the list-of-parameters parameter contains one name of a Functional
Resource Instance that is associated with the service instance that executes the
procedure containing the GET operation;

e) if the list-of-parameters parameter contains one procedure type that is
associated with the service instance that executes the procedure containing the GET
operation;

f) if the list-of-parameters parameter contains one procedure name of a
procedure that is associated with the service instance that executes the procedure
containing the GET operation;

g) if (1) the list-of-parameters parameter contains one or more Functional
Resource Parameter Names or Functional Resource Parameter Labels and (2) every
one of these names or labels is the name or label of a parameter of a Functional
Resource that is associated with the service instance that executes the procedure that
contains the GET operation;

h) if (1) the list-of-parameters parameter contains one or more procedure
configuration Parameter Labels or Parameter Names and (2) every one of these labels or
names is the label or name of a configuration parameter of a procedure that is associated
with the service instance that executes the procedure that contains the GET operation.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 3-30 February 2021

3.12.1.3 If the GET invocation is valid, the service provider shall return the qualified
parameters (Parameter Name, the value, the type, and the qualifier of the parameter—
see annex C) using the qualified-parameters parameter. More specifically, if the
list-of-parameters

a) is left empty, then

1) for each Functional Resource Parameter Label represented by the default list (see
annex E), the service provider shall return the qualified parameter (see annex C)
for that label for the Functional Resource Instances of the given type that are
directly associated with the service instance that executes the procedure
containing the GET operation; and

2) for each procedure configuration Parameter Label in the default list, the service
provider shall return the qualified parameter for that label for every configured
instance of the procedure that is associated with the service instance that executes
the procedure containing the GET operation;

b) contains the name of a list of Parameter Labels, then

1) for each Functional Resource Parameter Label in the named list (see E), the
service provider shall return the qualified parameter for that label for each
Functional Resource Instance of the given type that is directly associated with the
service instance that executes the procedure containing the GET operation; and

2) for each procedure configuration Parameter Label in the named list, the service
provider shall return the qualified parameter for that label for every configured
instance of the procedure that is associated with the service instance that executes
the procedure containing the GET operation;

c) contains one Functional Resource Type, then the service provider shall return the
qualified parameters for all parameters of all Functional Resource Instances of the
given type that are directly associated with the service instance invoking the GET
operation;

d) contains one Functional Resource Name, then the service provider shall return the
qualified parameters for all parameters of the named Functional Resource Instance;

e) contains one procedure type, then the service provider shall return the qualified
parameter for all parameters of every configured instance of that procedure type that
is directly associated with the service instance invoking the GET operation;

f) contains one procedure name, then the service provider shall return the qualified
parameters for all configuration parameters for that procedure instance;

g) contains any Functional Resource Parameter Labels, then for each Functional
Resource Parameter Label, the service provider shall return the qualified parameter
for that label for each of the Functional Resource Instances of the given type that is
directly associated with the service instance that executes the procedure containing
the GET operation;

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 3-31 February 2021

h) contains any labels for procedure configuration parameters, then for each procedure
configuration Parameter Label, the service provider shall return the qualified
parameter for every configured instance of the procedure that is associated with the
service instance that executes the procedure containing the GET operation;

i) contains one or more Parameter Names, then the service provider shall return the
qualified parameter for each of the listed parameters.

3.12.1.4 If the GET invocation is invalid, the service provider shall issue a negative return
using one of the diagnostic values specified in 3.12.2.4.

3.12.1.5 Procedures using this operation shall define

a) the names of the lists of Parameter Labels;

b) the Parameter Labels contained in the named lists; and

c) which of the named lists shall serve as default lists, if any.

3.12.2 INVOCATION, RETURN, AND PARAMETERS

3.12.2.1 General

The parameters of the GET operation shall be present in the invocation and return as
specified in table 3-11.

Table 3-11: GET Operation Parameters

Parameters Invocation Return

Standard Operation Header (confirmed) M M

list-of-parameters M

qualified-parameters C

3.12.2.2 Operation Parameters Definitions

3.12.2.2.1 Standard Confirmed Operation Header

This operation shall use the Standard Confirmed Operation Header (see 3.3).

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 3-32 February 2021

3.12.2.2.2 list-of-parameters

3.12.2.2.2.1 The list-of-parameters parameter shall contain one of the following:

a) ‘empty’ (signifying default list);

b) the name of a list;

c) one Functional Resource Type;

d) one Functional Resource Name;

e) one procedure type;

f) one procedure name;

g) a set of individual Parameter Labels; or

h) a set of individual Parameter Names.

NOTE – The ASN.1 type of the list-of-parameters parameter is
ListOfParametersEvents (see F3.3).

3.12.2.2.2.2 If the list-of-parameters parameter is set to ‘empty’, the service
provider shall transmit the values of the parameters represented by the default list of
Parameter Labels, provided such list is known to the service provider.

NOTE – The definition of what is represented by the list of Parameter Labels can be found
in annex E.

3.12.2.2.2.3 A name of a list of Parameter Labels shall be defined as a string.

NOTE – The composition of Parameter Names is discussed in annex E.

3.12.2.2.2.4 The parameters that may be contained in the list-of-parameters
parameter shall include (but not be limited to) the parameter that reports the production-
status of the service, as specified in B2.2.2 and B2.2.3.

3.12.2.2.3 qualified-parameters

If the result is ‘positive’ (i.e., positive GET return), the parameter values requested via the
list-of-parameters shall be returned in the qualified-parameters parameter
as specified in annex C.

3.12.2.2.4 GET Invocation Syntax

The type GetInvocation, as defined in F3.4, shall specify the syntax of the GET
invocation PDU and its parameters.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 3-33 February 2021

3.12.2.2.5 GET Return Syntax

The type GetReturn, as defined in F3.4, shall specify the syntax of the GET return PDU
and its parameters.

3.12.2.3 positive Parameter Extension Value Definitions

The type GetPosReturnExt, as defined in F3.4, shall specify the syntax of the positive
return extension of the GET operation.

3.12.2.4 diagnostic Parameter Extension Value Definitions and Syntax

3.12.2.4.1 If a negative GET return is sent, one of the diagnostic values specified in
3.3.2.7 or one of the following diagnostic values shall be used:

a) ‘default not defined’—the default list (list-of-parameters set to ‘empty’) is
unknown to the service provider.

b) ‘unknown list name’—the list name contained in the list-of-parameters is
unknown to the service provider. The unknown list name shall be returned with the
diagnostic.

c) ‘unknown Functional Resource Type’—the Functional Resource Type contained in
the list-of-parameters is unknown to the service provider (see 3.12.2.2.2), or
the Functional Resource Type is not associated with the service instance that executes
the procedure containing the GET operation. The unknown Functional Resource Type
shall be returned with the diagnostic.

d) ‘unknown Functional Resource Name’—while the Functional Resource Type is
known, the Functional Resource Name contained in the list-of-parameters is
unknown to the service provider (see 3.12.2.2.2), or the selected Functional Resource
Instance is not associated with the service instance that executes the procedure
containing the GET operation. The unknown Functional Resource Name shall be
returned with the diagnostic.

e) ‘unknown procedure type’—the procedure type contained in the list-of-
parameters is unknown to the service provider (see 3.12.2.2.2). The unknown
procedure type shall be returned with the diagnostic.

f) ‘unknown procedure name’—while the procedure type is known, the procedure instance
contained in the list-of-parameters is unknown to the service provider (see
3.12.2.2.2). The unknown procedure name shall be returned with the diagnostic.

g) ‘unknown parameter identifier’—one or more Parameter Identifiers contained in the
list-of-parameters parameter are unknown to the service provider (see
3.12.2.2.2) for one of the following reasons:

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 3-34 February 2021

1) the Functional Resource or procedure type specified as part of the Parameter
Label is not associated with the service instance executing the procedure
containing the GET operation;

2) the Functional Resource or procedure instance specified as part of the Parameter
Name is not associated with the service instance executing the procedure
containing the GET operation;

3) a parameter with the given Published Identifier does not exist for the specified
Functional Resource or procedure type.

The list of unknown Parameter Names or Parameter Labels shall be returned with the
diagnostic. For each unknown Parameter Identifier that is contained in a
Parameter Name in the list-of-parameters, the Parameter Name shall be
returned. For each unknown Parameter Identifier that is contained in a Parameter
Label in the list-of-parameters, the Parameter Label shall be returned.

3.12.2.4.2 The type GetDiagnosticExt, as defined in F3.4, shall specify the syntax of
the diagnostic parameter of the GET return, extended as listed in 3.12.2.4.1.

3.13 EXECUTE-DIRECTIVE (ACKNOWLEDGED)

3.13.1 BEHAVIOR

NOTES

1 The service user can invoke the EXECUTE-DIRECTIVE operation to cause the EM
of the ESLT to perform a specified action.

2 The EXECUTE-DIRECTIVE is an acknowledged operation, which provides
intermediate feedback to the service user to acknowledge that the invocation has been
received and is valid, as well as a final feedback regarding the outcome of the
operation, which is returned some time after the acknowledgement.

3.13.1.1 The specified action to be performed when invoked by means of the EXECUTE-
DIRECTIVE operation shall be defined by one of the following:

a) a directive-identifier registered for the procedure containing the invoked
EXECUTE-DIRECTIVE operation;

b) a directive-identifier registered for a procedure type, if that type is
associated with the service instance executing the procedure containing the invoked
EXECUTE-DIRECTIVE operation;

c) a directive-identifier registered for a Functional Resource Type, if that
type is associated with the service instance executing the procedure containing the
invoked EXECUTE-DIRECTIVE operation.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 3-35 February 2021

3.13.1.2 The service provider shall provide a report (acknowledgement) on the acceptance
of the EXECUTE-DIRECTIVE invocation to the service user.

3.13.1.3 If the EXECUTE-DIRECTIVE invocation is valid, the service provider shall
execute the action and then provide a report (return) on the outcome of the overall
performance of the EXECUTE-DIRECTIVE operation.

3.13.2 INVOCATION, RESPONSES, AND PARAMETERS

3.13.2.1 General

The parameters of the EXECUTE-DIRECTIVE operation shall be present in the invocation,
acknowledgement, and return, as specified in table 3-12.

Table 3-12: EXECUTE-DIRECTIVE Operation Parameters

Parameters Invocation Acknowledgement Return
Standard Operation Header (confirmed) M M M

directive-identifier M

directive-qualifier M

3.13.2.2 Operation Parameters Definitions

3.13.2.2.1 Standard Confirmed Operation Header

This operation shall use the Standard Confirmed Operation Header (see 3.3).

3.13.2.2.2 directive-identifier

3.13.2.2.2.1 The directive-identifier shall identify the action that is to be
performed by the EM of the ESLT.

3.13.2.2.2.2 The directive-identifier parameter shall be of the type
PublishedIdentifier and may be registered either for a procedure type or for a
Functional Resource Type (see E6.1).

3.13.2.2.3 directive-qualifier

3.13.2.2.3.1 The directive-qualifier shall contain complementary data necessary to
perform the action specified by the directive-identifier parameter.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 3-36 February 2021

3.13.2.2.3.2 Depending on the scope of the directive-identifier (see 3.13.1.1) the
directive-qualifier parameter shall be comprised of one of the following:

a) the directive qualifier values;

b) the type and instance number of the procedure the directive shall act on and the
directive qualifier values;

c) the type and instance number of the Functional Resource the directive shall act on
and the directive qualifier values.

3.13.2.2.3.3 The directive qualifier values shall be one of the following:

a) ‘noQualifierValues’ to indicate that, for the given directive-identifier, the
directive-qualifier parameter does not carry complementary information;

b) a possibly complex structure of values not associated with formally defined
parameters identified by means of Published Identifiers; the data structure shall be of
the type TypeAndValue defined in F3.3;

c) a sequence of parameter identifiers and the associated parameter values in which the
parameter identifier is the Published Identifier assigned to this parameter and the
parameter value is of the type TypeAndValue defined in F3.3.

3.13.2.2.3.4 A procedure using this operation may extend the operation by defining the
structure and the semantics of the extension field in the directive-qualifier parameter.

3.13.2.2.4 EXECUTE-DIRECTIVE Invocation Syntax

The type ExecuteDirectiveInvocation, as defined in F3.4, shall specify the syntax
of the EXECUTE-DIRECTIVE invocation PDU and its parameters.

3.13.2.2.5 EXECUTE-DIRECTIVE Acknowledgement Syntax

The type ExecuteDirectiveAcknowledge, as defined in F3.4, shall specify the
syntax of the EXECUTE-DIRECTIVE acknowledgement PDU and its parameters.

3.13.2.2.6 EXECUTE-DIRECTIVE Return Syntax

The type ExecuteDirectiveReturn, as defined in F3.4, shall specify the syntax of the
EXECUTE-DIRECTIVE return PDU and its parameters.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 3-37 February 2021

3.13.2.3 diagnostic Parameter Extension Value Definitions and Syntax

3.13.2.3.1 If an EXECUTE-DIRECTIVE negative acknowledgement is sent, one of the
diagnostic values specified in 3.3.2.7 or one of the following diagnostic values shall
be used:

a) ‘unknown directive’—the directive-identifier specified in the invocation is
not valid; that is, the directive-identifier is not registered for the procedure or
for the Functional Resource Type specified in the directive-qualifier
parameter;

b) ‘unknown qualifier’—the directive-qualifier specified in the invocation is
not valid for the given directive-identifier;

c) ‘invalid procedure instance’—the specified instance of the procedure type that the
directive shall act on does not exist;

d) ‘invalid functional resource instance’—the specified instance of the given Functional
Resource Type that the directive shall act on does not exist;

e) ‘invalid Functional Resource parameter’—either (1) one or more of the Parameter
Identifiers in the sequence of Parameter Identifiers in the directive-qualifier
are not published Parameter Identifiers of the Functional Resource the directive shall act
on, or (2) the associated parameter value is not of the type specified for that parameter of
the Functional Resource. This diagnostic value shall include a list of all Parameter
Names contained in the directive-qualifier that are invalid for the given
Functional Resource Type or for which the type of the parameter value is invalid;

f) ‘invalid procedure parameter’—either (1) one or more of the Parameter Identifiers in the
sequence of Parameter Identifiers in the directive-qualifier are not published
Parameter Identifiers of a configuration parameter of the procedure the directive shall act
on, or (2) the associated parameter value is not of the type specified for that
configuration parameter of the procedure. This diagnostic value shall include a list
of all Parameter Names contained in the directive-qualifier that are invalid
for the given procedure or for which the type of the parameter value is invalid;

g) ‘parameter value out of range’—one or more of the parameters in the parameter
sequence of the directive-qualifier have a value that is outside the range
that is defined for that parameter. This diagnostic value shall include a list of all
Parameter Names contained in the directive-qualifier for which the
parameter value falls outside the valid range.

3.13.2.3.2 The type ExecDirNegAckDiagnosticExt, as defined in F3.4 shall specify
the syntax of the diagnostic parameter of the EXECUTE-DIRECTIVE
acknowledgement, extended as listed in 3.13.2.3.1.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 3-38 February 2021

3.13.2.3.3 If an EXECUTE-DIRECTIVE negative return is sent, one of the diagnostic
values specified in 3.3.2.7 or the following diagnostic value shall be used:

‘action not completed’—the requested action was not completed, for example,
because the guard condition of some of the parameters to be updated evaluated to
FALSE. This diagnostic value shall include a list of all Parameter Names
contained in the directive-qualifier for which setting of the parameter value
was successful. If the given directive is not intended to change parameter values, the
list of Parameter Names shall be empty.

NOTE – The only diagnostic value of those defined in 3.3.2.7 that might be applicable
in this case is ‘other reason’. An implementation using this diagnostic value
needs to document the conditions under which this diagnostic value applies
(see 3.3.2.7.2). In case any of the other diagnostic values defined in 3.3.2.7
apply, the EXECUTE-DIRECTIVE operation will fail with a negative
acknowledgement, and therefore a negative return will not be sent.

3.13.2.3.4 The type ExecDirNegReturnDiagnosticExt, as defined in F3.4, shall
specify the syntax of the diagnostic parameter of the EXECUTE-DIRECTIVE return
extended, as listed in 3.13.2.3.3.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-1 February 2021

4 PROCEDURES

4.1 OVERVIEW

This section specifies the procedures defined in this Recommended Standard. Subsection 4.2
specifies behaviors that are generally applicable to all procedures. Subsections 4.3 through
4.12 specify common procedures defined in this Recommended Standard.

NOTE – Unless otherwise specified, all statements made in this section shall be
understood to refer to a single procedure instance only.

4.2 COMMON PROCEDURES BEHAVIOR

4.2.1 PROCEDURE INSTANCES CREATION

4.2.1.1 The Association Control procedure shall be instantiated at service instance creation
and shall exist for the lifetime of the service instance.

4.2.1.2 All procedures other than the Association Control procedure shall be instantiated as
soon as a positive BIND return is issued by the service provider.

4.2.1.3 The service provider shall not accept and process any operations except BIND until it
returns a positive BIND return. Exception to that statement is the reception of a PEER-ABORT
following the reception of a BIND invocation and preceding the issue of the BIND return.

4.2.2 TERMINATION OF THE ASSOCIATION

4.2.2.1 On reception of an UNBIND invocation, the Association Control procedure shall
issue a ‘terminate procedure’ event to all procedure instances of the service instance.

4.2.2.2 On ‘protocol abort’ (see 1.6.1.7.40) or reception of a PEER-ABORT invocation
(see 3.6), the Association Control procedure shall communicate a ‘terminate procedure’
event to all procedure instances of the service instance.

4.2.2.3 If any procedure other than the Association Control procedure initiates an abort, it
shall issue a ‘procedure to association abort ‘xxx’’ event to the Association Control procedure,
where ‘xxx’ represents the diagnostic value for the abort event (see 4.2.2.5).

4.2.2.4 One of the conditions under which a procedure shall issue a ‘procedure to
association abort ‘xxx’’ event to the Association Control procedure is that the ‘invalid PDU’
incoming event is triggered. This shall be the case whenever one of the conditions specified
in 3.2.3.6 a), b), c), or e) is given.

NOTE – The condition specified in 3.2.3.6 d) is covered by the individual procedure state
tables.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-2 February 2021

4.2.2.5 The diagnostic parameter value (see 3.6.2.2.1.2) to be used in the ‘procedure to
association abort ‘xxx’’ action is

a) ‘encoding error’ in case the condition specified in 3.2.3.6 b) applies;

b) ‘duplicate invoke id’ in case the condition specified in 3.2.3.6 e) applies;

c) ‘invalid procedure name’ in case the condition specified in 3.2.3.6 c) applies; and

d) ‘unrecognized operation or parameter type’ in case the condition specified in
3.2.3.6 a) applies.

NOTE – If an implementation chooses to use the diagnostic value ‘other reason’ (see
3.6.2.2.1.2 j)), the exact condition under which this is done needs to be specified
(see 3.3.2.7.2).

4.2.2.6 On reception of the ‘procedure to association abort ‘xxx’’ event from any other
procedure, the Association Control procedure shall abort the association.

4.2.2.7 In aborting the association, the Association Control procedure shall invoke the
PEER-ABORT operation with the appropriate diagnostic value.

4.2.2.8 When invoking the PEER-ABORT, the Association Control procedure of the
service provider shall communicate a ‘terminate procedure’ event to all procedure instances
of the service instance.

4.2.3 TERMINATING

4.2.3.1 The Association Control procedure is responsible for sending the ‘terminate
procedure’ event to all procedures of the service instance.

4.2.3.2 On reception of a ‘terminate procedure’ event from the Association Control
procedure, all procedures shall terminate all their activities, release their resources, and cease
to exist, unless otherwise specified by the procedures.

NOTE – If a procedure is terminated prior to action completion, the service provider will
not report on the result of the on-going operations after re-establishing the
association.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-3 February 2021

4.2.4 PROCEDURE STATES

4.2.4.1 Once the association is established, all stateful procedures shall be in state
‘inactive’.

4.2.4.2 For stateful procedures that have a START and a STOP operation,

a) the transition from ‘inactive’ to ‘active’ occurs after the procedure accepts the
START invocation (i.e., when the procedure has sent a positive START return); and

b) the transition from ‘active’ to ‘inactive’ occurs after the procedure accepts the STOP
invocation (i.e., when the procedure has sent a positive STOP return).

4.2.4.3 For stateful procedures that do not have a START and a STOP operation, the state
transition shall be specified by the procedure.

NOTE – Annex G should also be consulted for a description of the service state tables.

4.2.5 DERIVED PROCEDURES

4.2.5.1 The specification of a derived procedure shall identify the parent procedure type
from which it is derived.

4.2.5.2 If a procedure is designated as a derived procedure, it inherits the complete
behavior of the parent procedure except when the specification of the derived procedure
explicitly modifies the parent procedure’s behavior.

4.2.5.3 The state table and the associated tables of a derived procedure shall be self
contained; however, elements being inherited from the parent procedure without any
modification shall be presented in italic font.

NOTE – The procedures specified in 4.7, 4.8, and 4.10 are examples of derived
procedures.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-4 February 2021

4.3 ASSOCIATION CONTROL

4.3.1 VERSION NUMBER

The version number of this procedure is 2.

4.3.2 DISCUSSION

4.3.2.1 Purpose

The Association Control procedure establishes and releases an association between a service
user and a service provider for a given service instance.

4.3.2.2 Concept

The service user initiates the association by sending a BIND invocation. On reception of the
BIND invocation, the service provider reports to the service user whether the association is
established or not.

To orderly terminate the association the service user sends an UNBIND invocation. On
reception of the UNBIND invocation, the service provider reports to the service user whether
the association release is accepted or aborted. The Association Control procedure forwards
the ‘terminate procedure’ event to all procedure instances of the service instance.

The association can be aborted by either the service user or the service provider to inform the
peer system that the local system detected an error that requires the association be
terminated. In case of abort, the Association Control procedure forwards the ‘terminate
procedure’ event to all procedure instances of the service instance.

The values of the version-number and service-type parameters are selected as part
of the service definition.

4.3.3 BEHAVIOR

4.3.3.1 Activities

4.3.3.1.1 At the beginning of the service instance provision period, as specified by Service
Management, the Association Control procedure of the service instance shall be placed in the
‘unbound’ state and made available for binding by the service user.

4.3.3.1.2 After having received a valid BIND invocation, the service provider shall
establish the association for the given service instance with the service user having invoked
the BIND operation, transitioning from service instance state 1 (‘unbound’) to service
instance state 2 (‘bound’).

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-5 February 2021

4.3.3.1.3 After having received a valid UNBIND invocation, the service provider shall
release the association transitioning from service instance state 2 (‘bound’) to service
instance state 1 (‘unbound’).

4.3.3.1.4 The service provider may abort the association by invoking the PEER-ABORT
operation.

4.3.3.1.5 The service provider shall abort the association when receiving the PEER-
ABORT invocation from the service user.

4.3.3.1.6 An association also may be aborted because of certain failures of the underlying
communications service; such failures are signaled to the local application by a ‘protocol
abort’ event (see 1.6.1.7.40).

4.3.3.1.7 The deletion of a service instance shall result in the release of all resources
associated with that service instance.

4.3.3.1.8 Binding

4.3.3.1.8.1 Should the service user after having invoked the BIND operation invoke any
further operations for this service instance before the service provider has sent the BIND
return, such invocation shall be treated as an invalid PDU (see 3.2.3.6 d)).

4.3.3.1.8.2 If a BIND invocation is received from a service user for a service instance that is
already bound to another service user, it shall be rejected with a BIND return with the result
parameter set to ‘negative’ and the diagnostic parameter set to ‘already bound’.

NOTE – If the return from the BIND invocation is not received after a sufficiently long
time, the service user may attempt to recover by invoking the PEER-ABORT
operation followed by another BIND invocation. The length of the duration that
constitutes ‘a sufficiently long time’ is expected to be the value of the response-
timeout configuration parameter (see 3.2.1.2).

4.3.3.1.8.3 On reception of the BIND invocation, if the invocation is accepted, the service
provider shall allocate all resources needed for the service instance.

4.3.3.1.8.4 Once the association is established, the Association Control procedure shall
transition to state 2 (‘bound’).

NOTE – Following receipt of the return from an UNBIND invocation or following the
invocation of PEER-ABORT, the service user may issue another BIND
invocation if permissible at that point (e.g., if the end of the service instance
provision period has not yet been reached).

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-6 February 2021

4.3.3.1.9 Unbinding

4.3.3.1.9.1 On reception of a valid UNBIND invocation, the service provider shall send a
positive UNBIND return and release the association previously established by a BIND
operation.

4.3.3.1.9.2 Should the service user after having invoked the UNBIND operation invoke any
further operations for this service instance before the service provider has sent the UNBIND
return, such an invocation shall be treated as an invalid PDU (see 3.2.3.6 d)).

NOTE – If the return from the UNBIND operation is not received after a sufficiently long
time, the service user may attempt to recover by invoking the PEER-ABORT
operation to abort the association. The length of the duration that constitutes ‘a
sufficiently long time’ is expected to be the value of the response-timeout
configuration parameter (see 3.2.1.2).

4.3.3.1.9.3 The service provider shall accept the UNBIND invocation only in service
instance state 2.1 (‘bound.ready’).

4.3.3.1.9.4 If the UNBIND invocation is accepted, then the Association Control procedure
shall confirm the release of the association by issuing a positive UNBIND return.

4.3.3.1.10 Releasing

Releasing the association has the following effect: the service provider shall transition to
state 1 (‘unbound’).

NOTE – The act of releasing the association for a particular service instance does not
necessarily terminate the associated service production.

4.3.3.1.11 Aborting

4.3.3.1.11.1 The association may be aborted in one of three ways:

a) service provider initiated PEER-ABORT;

b) protocol abort signaled by the underlying communication layer;

c) service user initiated PEER-ABORT.

4.3.3.1.11.2 Regardless of the way the association is aborted, the service provider shall
transition to the state ‘unbound’.

4.3.3.1.11.3 If the event ‘end of service instance provision period’ occurs, then the
Association Control procedure of the service provider shall abort the association using the
PEER-ABORT operation, delete the service instance, and release its resources.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-7 February 2021

4.3.3.1.11.4 The Association Control procedure shall abort the association upon receipt of a
‘procedure to association abort ‘xxx’’ event from any of the other procedures that constitute
the service.

4.3.3.1.11.5 If the occurrence of an underlying communication problem is flagged by means
of the ‘protocol abort’ event, then the Association Control procedure shall act as if it had
invoked the PEER-ABORT operation.

4.3.3.1.11.6 In case the prime procedure is stateful, any attempt to release the association
while the prime procedure is ‘active’ shall result in a PEER-ABORT invoked by the service
provider.

4.3.3.1.12 Access Control

4.3.3.1.12.1 The Association Control procedure shall implement access control based on the
identity of the initiator and responder. Access control is performed at two levels:

a) the initiator must be registered at the responder, and the responder must be registered
at the initiator;

b) the initiator and responder must be authorized for the given service instance.

4.3.3.1.12.2 The initiator shall have access to a registry of authorized responders, and the
responder shall have access to a registry of authorized initiators. These registries shall be
maintained by the UM and the PM of the CSSSes, respectively.

4.3.3.1.12.3 The initiator and responder shall indicate their identities by setting the
parameters initiator-identifier and responder-identifier in the BIND
operation to the values assigned by service management.

4.3.3.1.13 Extensibility

4.3.3.1.13.1 The Association Control procedure may be extended with additional parameters.

NOTE – Extending the parameters is not recommended as use of this feature may impact
the generality of the Association Control procedure.

4.3.3.1.13.2 The Association Control procedure may be extended with additional
diagnostic values.

NOTE – Extending the diagnostic with additional values is not recommended, as use
of this feature may impact the generality of the Association Control procedure.

4.3.3.1.13.3 A CSTS shall not derive or refine the Association Procedure through inclusion
of operations other than the BIND, UNBIND, and PEER-ABORT operations.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-8 February 2021

4.3.4 REQUIRED OPERATIONS

Table 4-1: Association Control Procedure Required Operations

Operations Source Extended Refined Procedure
Blocking/Non-Blocking

BIND Common N N Blocking

UNBIND Common N N Blocking

PEER-ABORT Common N N Non-Blocking

4.3.5 CONFIGURATION PARAMETERS

The Association Control procedure configuration parameters that need to be configured in
the context of the procedure shall be as defined in table 4-2.

NOTE – For each configuration parameter, the table identifies the engineering unit (if
applicable), a cross reference to the use of the parameter in the specification of the
procedure, whether the parameter may be read, and the Parameter Identifier and
type to be used in reporting the value of the parameter. None of the configuration
parameters of this procedure can be dynamically changed while the service
instance executing the procedure is bound.

Table 4-2: Association Control Procedure Configuration Parameters

Parameters Cross-
Reference Readable Configuration Parameter

Identifier and Type (F3.16)
initiator-identifier 3.4.2.2.2,

4.3.3.1.12.3
Yes pACinitiatorId

PACinitiatorIdType

responder-identifier 3.4.2.2.3,
4.3.3.1.12.3

Yes pACresponderId
PACresponderIdType

responder-port-
identifier

3.4.2.2.4 Yes pACresponderPortId
PACresponderPortIdType

service-instance-
identifier

3.4.2.2.7 Yes pACserviceInstanceId
PACserviceInstanceIdType

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-9 February 2021

4.3.6 PROCEDURE STATE TABLE

NOTE – The state transition matrix specified in table 4-3 represents one instance of the
Association Control procedure. Since there is one and only one instance of the
Association Control procedure for each instance of a CSTS, the state table thus
represents the single association for that CSTS.

Table 4-3: Association Control Procedure State Table

No. Incoming Event State 1
(‘unbound’)

State 2
(‘bound’)

1 (BindInvocation) IF
 “positive result”
THEN
 (+BindReturn)
 2
ELSE
 (-BindReturn)
 1
ENDIF

{peer abort ‘protocol error’}
 1

2 ‘end of service instance
provision period’

‘delete service instance’ {peer abort ‘end-of-service-instance-provision-
period’}
‘delete service instance’
 1

3 (UnbindInvocation) [ignore] IF
 “prime procedure is stateful and active”
THEN
 {peer abort ‘protocol error’}
ELSE
 (+UnbindReturn)
 ‘terminate procedure’
ENDIF
 1

4 (PeerAbortInvocation) [ignore] ‘terminate procedure’
 1

5 ‘procedure to
association abort ‘xxx’’

[ignore] {peer abort ‘xxx’}
 1

6 ‘invalid PDU’ xxx’’ [ignore] {peer abort ‘xxx’}
 1

7 ‘protocol abort’ [ignore] ‘terminate procedure’
 1

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-10 February 2021

Table 4-4: Procedure State Table Incoming Event Description References

Event Reference

‘end of service instance provision period’ 3.6.2.2, 4.3.3.1.11.3

‘invalid PDU ‘xxx’’ 3.2.3.6, 4.2.2.4. ‘xxx’ is one of the diagnostic
values specified in 4.2.2.5.

‘procedure to association abort ‘xxx’’ 4.2.2.3, 4.2.2.5, 4.3.3.1.11.4

‘protocol abort’ 4.3.3.1.11.5

(PeerAbortInvocation) 4.3.3.1.11.1

(UnbindInvocation) 4.3.3.1.9.4

(BindInvocation) 4.3.3.1.8.2, 4.3.3.1.8.3

Table 4-5: Procedure State Table Predicate Descriptions

Predicate Evaluates to TRUE if
“positive result” No reason for sending a negative BIND return has been detected;

that is, none of the conditions in 3.4.2.3.1 applies.
“prime procedure is stateful
and active”

The prime procedure of the given CSTS instance is stateful and
currently in the state ‘active’.

Table 4-6: Procedure State Table Simple Action References

Name References
‘delete service instance’ 4.3.3.1.7
‘abort ‘xxx’’ 4.2.2.7, 4.2.2.5, ‘xxx’ indicates the diagnostic value that is

reported by the PEER-ABORT operation
‘terminate procedure’ 4.2.3, internal event from the Association Control procedure to all

other procedures of the service instance in response to a ‘protocol
abort’ event, a PEER-ABORT, or an UNBIND

Table 4-7: Procedure State Table Compound Action Definitions

Name Actions Performed
{peer abort ‘xxx’} ‘terminate procedure’

‘abort ‘xxx’’

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-11 February 2021

4.4 UNBUFFERED DATA DELIVERY

4.4.1 VERSION NUMBER

The version number of this procedure is 1.

4.4.2 DISCUSSION

4.4.2.1 Purpose

This Unbuffered Data Delivery procedure can be used to accomplish the transfer of data
from the service provider to the service user in a ‘best effort’ manner; that is, data are
delivered as soon as generated, if possible, and are discarded individually in case of
communication-link congestion or backpressure from the peer entity.

4.4.2.2 Concept

The Unbuffered Data Delivery procedure supports transfer of data units from the service
provider to the service user. The behavior of this process is the following:

As each data unit is generated, it is either immediately transferred or immediately discarded
in case the underlying communication service does not accept the data unit for transfer. Each
data unit contains a sequence counter allowing the service user to detect the loss of data.

Production of data units might refer to extraction of these data units from the space link or to
any other process generating data.

The operations defined in this procedure allow a service user to interact with a service
provider to

a) request start of the data transfer specifying the selection criteria of the data to be
transferred;

b) receive the specified data units; and

c) stop and optionally later re-start the delivery of data units applying the same or a
different selection.

The service user starts the data transfer by invoking the START operation and specifying the
selection criteria of the data to be transferred.

The service user can stop the data transfer at any time by invoking the STOP operation.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-12 February 2021

4.4.3 BEHAVIOR

4.4.3.1 Starting

The service provider shall send a positive START return and perform the START operation
invoked by the service user except if

a) the production-status is ‘halted’, in which case the START operation shall be
rejected by sending a negative START return with the diagnostic value ‘out of
service’; or

b) the procedure is in State 2 (‘active’), in which case the procedure shall request the
Association Control procedure to abort the association with setting the diagnostic
value to ‘protocol error’.

NOTE – The service user will initiate the transfer of data by this procedure by invoking
the START operation.

4.4.3.2 Transferring Data

4.4.3.2.1 After a successful START operation, the service provider shall transfer the data
by means of invoking the TRANSFER-DATA operation as the data become available from
the production and pass the TRANSFER-DATA PDU to the underlying communications
service.

4.4.3.2.2 The transfer shall end when one of the following occurs:

a) no more data are to be expected;

b) STOP is invoked by the service user;

c) the service instance is aborted.

4.4.3.2.3 TRANSFER-DATA is valid only in procedure state ‘active’ and shall be invoked
only by the service provider.

4.4.3.2.4 The transfer shall start with the most recently generated data; the availability of
new data generated by the production engine constitutes the ‘data available’ event (see table
4-10).

4.4.3.2.5 Data units shall be transmitted in the sequence in which they are generated.

4.4.3.2.6 While the underlying communications service does not accept data units for
transfer because of to backpressure, the affected data units shall be discarded.

NOTE – Backpressure may be caused by a congested communication link or by a user
application that does not accept the data units at the rate at which they are
generated.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-13 February 2021

4.4.3.3 Stopping

4.4.3.3.1 The service provider shall perform the STOP operation when receiving a valid
STOP invocation from the service user.

4.4.3.3.2 If the service provider accepts the STOP invocation,

a) it shall stop sending TRANSFER-DATA invocations; and

b) it shall send the STOP return.

4.4.3.4 Terminating

Upon receipt of a ‘terminate procedure’ event from the Association Control procedure, the
procedure shall terminate by

a) stopping transmitting TRANSFER-DATA invocations; and

b) releasing the resources.

4.4.4 REQUIRED OPERATIONS

Table 4-8: Unbuffered Data Delivery Procedure Required Operations

Operations Source Extended Refined
Procedure Blocking/

Non-Blocking
START Common N N Blocking

STOP Common N N Blocking

TRANSFER-DATA Common N N Non-Blocking

NOTE – Subsection 3.9.2.2.4.3 stipulates that a procedure using the TRANSFER-DATA
operation refines or extends the data parameter of that operation. The
Unbuffered Data Delivery procedure does not do that. The data syntax
definition is left to a derived procedure or the service using this procedure.

4.4.5 CONFIGURATION PARAMETERS

The Unbuffered Data Delivery procedure does not have any configuration parameters.

NOTE – Consequently, the Unbuffered Data Delivery procedure has neither any
configuration parameter that can be read by a service using this procedure nor
any parameter that can be changed dynamically while the service instance
executing the Unbuffered Data Delivery procedure instance is bound.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-14 February 2021

4.4.6 PROCEDURE STATE TABLE

Table 4-9: Unbuffered Data Delivery Procedure State Table

No. Incoming Event State 1
(‘inactive’)

State 2
(‘active’)

1 (StartInvocation) IF
 “positive result”
THEN
 (+StartReturn)
 2
ELSE
 (-StartReturn)
ENDIF

‘procedure to association abort ‘protocol
error’’
 1

2 (StopInvocation) ‘procedure to association abort
‘protocol error’’

IF
 “positive result”
THEN
 (+StopReturn)
 1
ELSE
 (-StopReturn)
ENDIF

3 ‘data available’ Not applicable IF
 (NOT “backpressure”)
THEN
 ‘send data to underlying communications
 service’
ELSE
 ‘discard data’
ENDIF

4 ‘invalid PDU ’xxx’’ ‘procedure to association abort ‘xxx’’ ‘procedure to association abort ‘xxx’’
 1

5 ‘terminate procedure’ ‘terminate itself’ ‘terminate itself’

Table 4-10: Procedure State Table Incoming Event Description References

Event Reference
‘data available’ 4.4.3.2.4

‘invalid PDU ‘xxx’’ 3.2.3.6, 4.2.2.4. ‘xxx’ is one of the diagnostic values specified
in 4.2.2.5.

‘terminate procedure’ 4.2.3, internal event from the Association Control procedure to all
other procedures of the service instance in response to a protocol
abort, a PEER-ABORT, or an UNBIND

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-15 February 2021

Table 4-11: Procedure State Table Predicate Descriptions

Predicate Evaluates to TRUE if
“positive result” No reason for sending a negative return has been detected; that

is, for the START invocation, none of the conditions in 3.7.2.3.1
applies, and for the STOP invocation, none of the conditions in
3.3.2.7.1 applies.

Table 4-12: Procedure State Table Boolean Flags

Flag Set to TRUE if
“backpressure” The underlying communications service does not accept the data

unit to be transferred because of backpressure.

Table 4-13: Procedure State Table Simple Action References

Name References
‘send data to underlying
communications service’

4.4.3.2.1

‘discard data’ 4.4.3.2.6

‘procedure to association
abort ‘xxx’’

4.2.2.3, 4.2.2.5, raise ‘procedure to association abort ‘xxx’’ event
with diagnostic set to ‘xxx’ to the Association Control
procedure

‘terminate itself’ 4.4.3.4

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-16 February 2021

4.5 BUFFERED DATA DELIVERY

4.5.1 VERSION NUMBER

The version number of this procedure is 2.

4.5.2 DISCUSSION

4.5.2.1 Purpose

The Buffered Data Delivery procedure is intended to be used for the development of services
that transfer bulk data from a service provider to a service user. The data to be delivered is
structured into delimited data units by a service production process. These data units are either

a) service production data units, which contain data obtained from a service production
process; or

b) service production event notifications, which contain information related to changes
in the status of the production process.

The Buffered Data Delivery procedure is suitable for transfer of data under either of the
following conditions, which are typical of space mission operations:

a) The service user requires delivery of the most-recent data available. Some data may
be discarded and thus not sent to the service user, if necessary to maintain timeliness
when communication backpressure occurs.

b) The service user requires delivery of all data requested. Delayed delivery is
acceptable, if necessary to provide complete delivery of data when communication
backpressure occurs.

For this purpose, the procedure allows the service instance to be configured to operate in one
of the following delivery modes:

a) real-time;

b) complete.

NOTE – Strictly speaking, the delivery mode is a characteristic of the Buffered Data
Delivery procedure rather than a characteristic of a service instance using this
procedure. However, given that delivery-mode is a service management
parameter that cannot be dynamically modified, and given that Service
Management configures the service management parameters of all instances of a
procedure type equally (see 2.3), all Buffered Data Delivery procedure instances
associated with a given service instance will operate in the same delivery mode.
Therefore one can also associate the service instance with that delivery mode.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-17 February 2021

4.5.2.2 Concept

4.5.2.2.1 Overview

The Buffered Data Delivery (BDD) procedure supports either of the following delivery
modes:

a) real-time—the service provider ensures that blocks containing the desired minimum
number of the most recent consecutive data units are transferred with a specified
maximum latency; if that latency is exceeded, such blocks of data units are discarded
and the service user is notified.

b) complete—the service provider transfers previously recorded data accepting potentially
high latency in case backpressure on the ground link does not allow transferring the data
in a timely manner or the service user requested the delivery after the data generation had
happened. The service provider ensures that no data is discarded.

The complete delivery mode has the following objectives:

a) data retrieved from the recording buffer are delivered to the service user;

b) data units and event notifications are always delivered in sequence without discarding
data.

The BDD procedure reacts to changes of the production status. Production status always
refers to the production status of the service at the time the service instance using the BDD
procedure is bound. If the procedure is used in real-time delivery mode, this also reflects the
status of the production process generating the data to be delivered to the service user.

In complete mode, the production process generating the data may take place at a time when
the service instance using the BDD procedure does not even exist. Nonetheless, problems
during the production may arise resulting, for instance, in missing data. Depending on the
local implementation of the Functional Resources involved in the production process, they
may report events regarding changes of the resource status, and these events may be stored
together with the to-be-delivered data in the recording buffer. The CSTS using the BDD
procedure will specify how the recording buffer derives an aggregate recording buffer
production status (see 4.5.7.5). During the data delivery to the user, the service may evaluate
the previously recorded resource status change events and the recording buffer production
status change events, which may then be reported to the user and explain, for example, why
certain data are missing. Such status derived from previously stored events is different from
the production status of the CSTS instance.

The service user can stop the data transfer at any time by invoking the STOP operation.

The formal specification of the delivery modes is provided in 4.5.3.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-18 February 2021

NOTES

1 Transfer of data in real-time delivery mode implies that data units are transmitted as
soon as possible after their generation by an ongoing service production session.

2 Transfer of previously recorded data in complete delivery mode implies that data
units are retrieved from a storage filled by an ongoing service production session or
by service production sessions terminated in the meantime.

3 The delivery mode to be applied to a given service instance needs to be defined by
the service using this procedure or by a derived procedure, or it may be delegated to
Service Management.

The operations used by this procedure allow a service user to interact with a service provider to

a) request the start of the data transfer, specifying the selection criteria of the data to be
transferred;

NOTE – Apart from the start and stop generation times that are included in the
START invocation, the specification of the selection criteria of the data
depends on the specific service or the derived procedure and is not defined by
this procedure.

b) receive the data units that meet the service user’s selection criteria;

c) receive, synchronized with the transfer of data units, notifications on events that have
a direct impact on the production and/or delivery of data units; and

d) stop and optionally later re-start the delivery of data units applying the same or a
different selection.

An event that may result in an event notification is

a) discardable: in case of backpressure affecting the communications service,
notifications reporting such an event will be discarded; or

b) non-discardable: the notifications reporting such events are not discarded, and
delivery to the service user is ensured.

NOTES

1 If a derived procedure introduces events in addition to those specified in 4.5.4.2.2.1.1,
then this derived procedure will have to classify those events as discardable or non-
discardable.

2 In complete delivery mode, all data units and event notifications are delivered to the
service user, and therefore the distinction of discardable and non-discardable events is
not relevant.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-19 February 2021

4.5.2.2.2 Buffering

4.5.2.2.2.1 General

As to achieve the characteristics of the real-time and complete delivery modes, the Buffered
Data Delivery procedure uses two buffering mechanisms, the return buffer and the recording
buffer. A return buffer, as shown in figure 4-1, is used by any instance of the Buffered Data
Delivery procedure or a procedure derived from it to prepare data for the transfer to the
service user, regardless of the delivery mode.

…. SPDU SPDU SPDU SPDU SPDU SPDU SPEN SPDU

Return Buffer for Service Instance i

Buffered Data Delivery Derived
Procedure Instance

Service Instance i

To User, via underlying
communications system

Sequence of Service Production Items from the production process

Other CSTS
Procedures

Legend
SPDU: Service Production Data Unit
SPEN: Service Production Event Notification
H: CSTS Standard Header
A: Instance-specific annotation
N: Instance-specific notification
[TD-Invoc]: Transfer Data Invocation
[N-Invoc]: Notify Invocation (from production)
[N-Invoc] : Notify Invocation (instance-specific)

[TD-Invoc][N-Invoc] [N-Invoc] [TD-Invoc]

[I+A+SPDU] [SPEN] [N] [I+A+SPDU]

• Add Standard Ieader (I) and
instance-specific annotation (A).

• Insert instance-specific notifications (N)

Figure 4-1: Services Using a Buffered Data Delivery Procedure

The recording buffer is used to store service production items for subsequent delivery by
instances of services operating in complete delivery mode. Figure 4-2 shows both real-time
and complete delivery mode service instances and the use of the recording buffer for
providing data to service instances in complete delivery mode.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-20 February 2021

Buffered Data Delivery Production Service Provision

SPDU
SPDU
SPDU
SPDU
SPDU
SPDU
SPDU
SPEN
SPDU
SPEN
SPDU
SPDU
SPDU
SPDU
SPEN
SPDU
SPDU

...
Recording

Buffer

Time-ordered sequence of
Service Production Items

Return Buffer

Buffered Data Delivery Derived
Procedure Instance

Real-time Service
Instance #1

To User

Other CSTS
Procedures

(One production process creates
data for all instances of service)

Return Buffer

Real-time Service
Instance #2

To User

Other CSTS
Procedures

Return Buffer

Complete Service
Instance #1

To User

Other CSTS
Procedures

Return Buffer

Complete Service
Instance #2

To User

Other CSTS
Procedures

(One instance of service for each user)

TOe Recording Buffer
may accumulaPe

daPa over Pime, or
may acP as a sOorP-
Perm buffer

[N-Invoc] [TD-Invoc] [TD-Invoc]

[TD-Invoc] [N-Invoc] [N-Invoc] [TD-Invoc]

[N-Invoc] [N-Invoc] [TD-Invoc]

[N-Invoc] [TD-Invoc] [TD-Invoc]

Buffered Data Delivery Derived
Procedure Instance

Buffered Data Delivery Derived
Procedure Instance

Buffered Data Delivery Derived
Procedure Instance

Legend
SPDU: Service Production Data Unit
SPEN: Service Production Event
Notification
[TD-Invoc]: Transfer Data
Invocation
[N-Invoc]: Notify Invocation
(from production)
[N-Invoc]: Notify Invocation
(instance-specific)

Figure 4-2: Real-Time and Complete Buffered Data Delivery Service Instances and
Supporting Buffering Mechanisms

NOTE – For convenience, the following subsections are written as if

a) the contents of the recording buffer consisted of a list of data units that are
either service production data units or service production event notifications;
and

b) the contents of the return buffer consisted of an ordered list of data units that
are either service production data units or service production event
notifications.

 However, this is not intended to constrain how the recording and return buffers
are implemented in a real system. It is sufficient that a real system provides the
externally visible behaviors that are specified herein.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-21 February 2021

4.5.2.2.2.2 Return Buffer

Each instance of a Buffered Data Delivery procedure or a procedure derived from it has a
dedicated return buffer, which is used to accumulate data prior to the transfer to the service
user. For each service production data unit, such a procedure adds the Standard Operation
Header and other parameters, as applicable, to create a TRANSFER-DATA invocation
(see 3.9). For each service production event notification, such a procedure adds the Standard
Operation Header and other parameters, as applicable, to create a NOTIFY invocation. These
invocations are inserted into the return buffer in the sequence in which they were generated.

The Buffered Data Delivery procedure or a procedure derived from it may also generate
instance-specific notifications in the form of NOTIFY invocations to inform the service user
of events or conditions that pertain only to the given instance of this procedure. A service
using a Buffered Data Delivery procedure or a derived procedure, and requiring such
notifications, needs to specify the events that trigger the generation of such procedure-type-
specific notifications. It may also specify that multiple notifications of persistent conditions
or recurring events are not to be sent in the absence of a to-be-transferred TRANSFER-
DATA invocation and/or NOTIFY invocation.

The details of how the return buffer is used by a given instance of the Buffered Data Delivery
procedure are specified in 4.5.3.2, 4.5.3.3, and 4.5.3.4.

4.5.2.2.2.3 Recording Buffer

Since the complete delivery mode is intended to deliver all data, even in the case of extended
communications service outages or backpressure, or even several days after the service
production session, extensive buffering is required. The recording buffer is intended to hold
all service production data units and service production event notifications for significant
periods of time.

A single instance of a recording buffer type may be shared by multiple instances of the
service that share the service production resources that generate the type of data stored by
that recording buffer type.

The recording buffer specification, in terms of normative behavior, queriable parameters, and
notifiable events common to all recording buffer types, is provided in 4.5.7. Procedures
derived from the BDD procedure may extend this recording buffer specification as required
by the service using such a procedure.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-22 February 2021

4.5.3 BEHAVIOR

4.5.3.1 Starting

The service provider shall send a positive START return and perform the START operation
invoked by the service user except if

a) the production-status is ‘halted’, in which case the START operation shall be
rejected by sending a negative START return with the diagnostic value ‘out of
service’; or

b) the procedure is in State 2 (‘active’), in which case the procedure shall request the
Association Control procedure to abort the association with setting the diagnostic
value to ‘protocol error’.

NOTE – The service user will initiate the transfer of data by this procedure using the
START operation including the selection criteria. The only selection criteria
specified for this procedure are the start and end generation times (see 4.5.4.1.2).

4.5.3.2 Transferring Data and Notifications

4.5.3.2.1 Upon successful completion of the START operation, the service provider shall
initialize the return buffer and insert the data that conform to the selection criteria in the form
of TRANSFER-DATA and/or NOTIFY invocations into the return buffer as the data become
available from the service production process or from the data retrieval from the recording
buffer.

4.5.3.2.2 The service provider shall set the value of the sequence-counter parameter
of the first TRANSFER-DATA invocation to be inserted into the return buffer to 0, as per
3.9.2.2.3.1.

4.5.3.2.3 The service provider shall handle the value of the sequence-counter, as per
3.9.2.2.3.

4.5.3.2.4 Upon successful completion of the START operation, the service provider shall
inform the service user about events affecting the production or the transfer of the data by
means of the NOTIFY operation.

4.5.3.2.5 All data and events shall be delivered in the order in which they were generated.

4.5.3.2.6 The service provider shall act in accordance with the applicable delivery mode.

4.5.3.2.7 The TRANSFER-DATA and NOTIFY invocations shall be inserted into the
associated return buffer of the Buffered Data Delivery procedure only while the procedure
state is ‘active’.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-23 February 2021

4.5.3.2.7.1 At the time of insertion of a TRANSFER-DATA or NOTIFY invocation into an
empty return buffer, the service provider shall start a timer called the release timer.

4.5.3.2.7.2 The duration from the time that the release timer is started until it expires is
given by the delivery-latency-limit parameter, the value of which is configured by
the service using this procedure or by a derived procedure.

4.5.3.2.7.3 For a given instance of the service, the return buffer shall accommodate a set
number of TRANSFER-DATA and/or NOTIFY invocations. That number, given by the
ReturnBufferSize parameter, is initially configured by the service using this procedure or by
a derived procedure based on the procedure’s return-buffer-size parameter.

4.5.3.2.7.4 The contents of the return buffer shall be passed to the communications service
(in the form of one ReturnBuffer PDU) as soon as one of the following conditions is met:

a) the buffer becomes full; that is, the number of TRANSFER-DATA and/or NOTIFY
invocations contained in the buffer is equal to the value of the ReturnBufferSize parameter;

b) the release timer expires;

c) one of the notifications ‘end of data’, ‘production status change’, ‘production configuration
change’, or ‘buffered data delivery configuration change’ is inserted into the return buffer; or

d) the service user invokes the STOP operation.

4.5.3.2.7.5 The ReturnBuffer PDU shall contain the TRANSFER-DATA and NOTIFY
invocations in the same sequence as they were inserted into the return buffer.

4.5.3.2.8 The insertion of invocations into the return buffer shall end when one of the
following occurs:

a) no further data or notifications meeting the selection criteria specified in the START
invocation are available;

b) data and/or notifications provided by service production have a generation time that is later
than the stop-generation-time in the START invocation; however, in this case the
‘end of data’ notification is still to be inserted into the return buffer (see 4.5.3.2.9);

c) STOP is invoked by the service user;

d) the association is aborted.

4.5.3.2.9 In case the generated data contains a generation time that is later than the stop-
generation-time in the START invocation, an ‘end of data’ notification shall be
generated and inserted into the return buffer.

4.5.3.2.10 Further conditions triggering the ‘end of data’ notification may be defined by
derived procedures.

NOTE – The definition of such conditions is needed, in particular, when the real-time
delivery mode is used and the stop-generation-time may be ‘undefined’.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-24 February 2021

4.5.3.3 Transferring Data and Notifications (Real-Time Delivery Mode)

4.5.3.3.1 Having built a TRANSFER-DATA invocation from the data received from
service production ready for insertion into the return buffer constitutes the ‘data available’
event (see 4.5.6).

4.5.3.3.2 A NOTIFY invocation shall be built and inserted into the return buffer whenever
one of the events ‘end of data’, ‘production status change’, ‘production configuration
change’, or ‘buffered data delivery configuration change’ triggers.

4.5.3.3.3 Insertion of invocations into the return buffer shall begin with

a) the most recent data or notification with a generation time equal to or later than the time
specified in the start-generation-time parameter in the START invocation; or

b) if the start-generation-time parameter in the START invocation is not set,
with the most recent data or notification with a generation time equal to or later than
the time at which the positive START return has been sent by the service provider.

4.5.3.3.4 The service provider shall insert notifications into the return buffer after the last
data generated before the event occurrence and before the first data generated after the event.

NOTE – Such synchronous insertion of notifications is performed upon production status changes
and according to further events being part of the procedure and/or service definition.

4.5.3.3.5 If the underlying communications service generates backpressure, that is, if the
communications service does not accept the ReturnBuffer PDU and the ReturnBuffer
PDU does not contain an ‘end of data’ notification, the service provider shall

a) discard this ReturnBuffer PDU;

b) clear the return buffer, with the exception of notifications associated with non-
discardable events;

c) insert a ‘data discarded due to excessive backlog’ notification at the top of the return
buffer; and

d) increase the size of the return buffer (ReturnBufferSize) by one plus the number of
notifications of non-discardable events; that new size shall remain in effect until the
contents of the return buffer are passed to the communications service, after which
ReturnBufferSize shall be reverted to the original size, as configured via the
return-buffer-size parameter.

NOTE – The temporary increase of the ReturnBufferSize ensures a minimum of data flow
in case of backpressure. Otherwise, only ‘data discarded due to excessive
backlog’ and non-discardable event notifications might be sent.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-25 February 2021

4.5.3.4 Transferring Data and Notifications (Complete Delivery Mode)

4.5.3.4.1 Having built a TRANSFER-DATA or NOTIFY invocation from the data
retrieved from the recording buffer ready for insertion into the return buffer constitutes the
‘data read from recording buffer’ event (see 4.5.6).

NOTE – The format in which data and events are captured in the recording buffer is an
implementation choice not prescribed by this Recommended Standard. Therefore
it may be necessary to ‘build’ the corresponding invocations based on the
recording buffer contents.

4.5.3.4.2 A NOTIFY invocation shall be built and inserted into the return buffer whenever
one of the events ‘end of data’, ‘production status change’, ‘production configuration
change’, or ‘buffered data delivery configuration change’ triggers.

NOTE – The events listed here may trigger during the delivery of the recording buffer
contents to the service user. They are not related to service production event
notifications previously stored in the recording buffer.

4.5.3.4.3 Insertion of invocations into the return buffer shall begin with the first data or
notification generated at or after the time specified by the start-generation-time
parameter in the START invocation and stored in the recording buffer.

4.5.3.4.4 Subsequent data units and notification records shall be retrieved from the
recording buffer and inserted into the return buffer in the same order in which they were
originally generated or received.

NOTE – Recording itself is outside the scope of the Buffered Data Delivery procedure.
However, the key characteristics of a recording buffer suitable for this procedure
are outlined in 4.5.2.2.2.3 and formally specified in 4.5.7.

4.5.3.4.5 When the underlying communications service has accepted the ReturnBuffer
PDU, the service provider shall clear the return buffer and resume retrieving data and
notifications from the recording buffer as described above.

4.5.3.5 Stopping

4.5.3.5.1 The service provider shall perform the STOP operation when receiving a valid
STOP invocation from the service user.

4.5.3.5.2 If the service provider accepts the STOP invocation,

a) it shall stop inserting TRANSFER-DATA and NOTIFY invocations into the return
buffer;

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-26 February 2021

b) it shall immediately build from the return buffer contents a ReturnBuffer PDU
and shall keep attempting to pass that ReturnBuffer PDU to the underlying
communications service until it is accepted; and

c) it shall send the STOP return.

NOTE – In case the return buffer cannot be transmitted within a reasonable time, the
return buffer may be discarded, as the service user is expected to invoke a
PEER-ABORT as soon as the response timer expires.

4.5.3.6 Terminating

Upon receipt of a ‘terminate procedure’ event from the Association Control procedure, the
Buffered Data Delivery procedure shall terminate by

a) stopping the insertion of invocations into the return buffer;

b) stopping the extraction of data and events from the recording buffer in case of
complete delivery mode; and

c) clearing the return buffer, stopping the release timer, stopping all response timers,
and releasing associated resources.

4.5.4 REQUIRED OPERATIONS

Table 4-14: Buffered Data Delivery Procedure Required Operations

Operations Source Extended Refined
Procedure

Blocking/Non-Blocking
START Common Y N Blocking
STOP Common N N Blocking
TRANSFER-
DATA Common N N Non-Blocking

NOTIFY Common Y N Non-Blocking

NOTE – Subsection 3.9.2.2.4.3 stipulates that a procedure using the TRANSFER-DATA
operation refines or extends the data parameter of that operation. The Buffered
Data Delivery procedure does not do that. The data syntax definition is left to a
derived procedure or the service using this procedure.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-27 February 2021

4.5.4.1 START (Confirmed)

4.5.4.1.1 General

The Buffered Data Delivery procedure shall extend the START operation defined in 3.7.2 by
adding two parameters to the invocation and by adding values to the diagnostic
parameter of the return.

4.5.4.1.2 Operation Parameters Definitions

NOTE – Table 4-15 shows the extension parameters of the START operation defined by
this procedure.

Table 4-15: START Extension Parameters

Extension Parameters Invocation Return

start-generation-time M

stop-generation-time M

4.5.4.1.2.1 Extension Parameters Syntax

The type BuffDataDelStartInvocExt, as defined in F3.7, shall specify the syntax of
the extension parameters of the START invocation.

4.5.4.1.2.2 start-generation-time

4.5.4.1.2.2.1 For the real-time delivery mode, if start-generation-time is
‘undefined’, the data transfer shall begin with the next data unit that is acquired from the data
acquisition process.

4.5.4.1.2.2.2 For the real-time delivery mode, start-generation-time, when not
‘undefined’, must satisfy the following criteria:

a) start-generation-time must be equal to or later than the start time of the
service instance provision period for this service instance;

b) start-generation-time must be earlier than the end time of the service
instance provision period for this service instance;

c) if stop-generation-time and start-generation-time are not
‘undefined’, start-generation-time must be earlier than stop-
generation-time (see 4.5.4.1.2.3).

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-28 February 2021

4.5.4.1.2.2.3 For the complete delivery mode, the service provider shall deliver all
available data that meet the delivery criteria regardless of the service production session in
which they were acquired.

4.5.4.1.2.2.4 For the complete delivery mode, start-generation-time must not be
set to ‘undefined’.

4.5.4.1.2.2.5 For the complete delivery mode, start-generation-time must be
earlier than stop-generation-time (see 4.5.4.1.2.3).

4.5.4.1.2.3 stop-generation-time

4.5.4.1.2.3.1 For the real-time delivery mode, if stop-generation-time is
‘undefined’, the service provider shall continue to transfer all data that are acquired from the
service production session and satisfy the delivery criteria until either the service user
invokes a STOP operation, the production terminates, or the association is released or
aborted.

4.5.4.1.2.3.2 For the real-time delivery mode, stop-generation-time must satisfy
the following criteria:

a) stop-generation-time, if not ‘undefined’, must be later than start-
generation-time;

b) stop-generation-time, if not ‘undefined’, must be earlier than or equal to the
end time of the service instance provision period for this service instance.

4.5.4.1.2.3.3 For the complete delivery mode, stop-generation-time must satisfy
the following criteria:

a) it must not be ‘undefined’;

b) it must be later than start-generation-time;

c) it must be earlier than or equal to the end time of the service instance provision period
for this service instance.

4.5.4.1.3 diagnostic Parameter Extension Value Definitions and Syntax

4.5.4.1.3.1 If a negative START return is sent, the diagnostic parameter shall use one
of the diagnostic values specified in 3.7.2.3, or one of the following values:

a) ‘missing time value’—for the complete delivery mode, the value of start-
generation-time or stop-generation-time is ‘undefined’;

b) ‘invalid start generation time’—the value of start-generation-time provided
in the invocation is not valid;

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-29 February 2021

c) ‘invalid stop generation time’—the value of stop-generation-time provided
in the invocation is not valid;

d) ‘inconsistent time’—the value of start-generation-time is later than the
value of stop-generation-time.

4.5.4.1.3.2 The type BuffDataDelStartDiagnosticExt, as defined in F3.7, shall
specify the syntax of the diagnostic parameter of the START return, extended as listed
in 4.5.4.1.3.1.

4.5.4.2 NOTIFY (Unconfirmed)

4.5.4.2.1 General

The Buffered Data Delivery procedure shall extend the NOTIFY operation defined in 3.11 by
adding one permissible Event Identifier to the event-name parameter.

NOTE – Only the events specified in 4.5.4.2.2.1.1 a) and h) are events associated directly
with the BDD procedure, and therefore the event OIDs are registered under the
fwProceduresFunctionalities node of the OID tree (see figure D-1). The other
events specified in 4.5.4.2.2.1.1 are emitted by Functional Resources and
therefore registered under the crossSupportFunctionalities node of the OID tree.
These events are forwarded to the service user by the BDD procedure by
inserting them into the return buffer. Event-name and event-value remain as
generated by the emitting Functional Resource. The relevant OIDs and data types
are specified in the registry https://sanaregistry.org/r/functional_resources.

4.5.4.2.2 Invocation and Parameters

4.5.4.2.2.1 event-name Extension

4.5.4.2.2.1.1 The value of the event-name shall be one of the following:

a) one of the values specified for the common NOTIFY operation in 3.11.2.2.3;

NOTES

1 The notifications specified in the common NOTIFY are discardable for the
Buffered Data Delivery procedure.

2 The ‘production status’ and ‘production status change’ event of a CSTS instance
using the BDD procedure in ‘complete’ delivery mode and changes thereto
depend on the ‘resource status’ of the associated recording buffer. Production
status may also be affected by some kind of on-line procedure connected to
resources, but will not be affected by the ‘resource status’ changes of those
Functional Resources involved in the earlier filling of the recording buffer with

https://sanaregistry.org/r/functional_resources/

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-30 February 2021

data and notifications. Those ‘resource status change’ events are stored in the
recording buffer. Likewise, the ‘production configuration change’ event emitted
by the Functional Resource representing a CSTS instance using the BDD
procedure in ‘complete’ delivery mode will be triggered by on-line configuration
changes of the recording buffer and possibly some on-line procedures, but not by
configuration changes of those Functional Resources involved in the earlier filling
of the recording buffer with data and notifications. Those ‘configuration change’
events are stored in the recording buffer.

b) ‘data discarded due to excessive backlog’ (event-name)—some data was
discarded by the service provider because of timeliness considerations (real-time
delivery mode);

1) the event-name of this event shall contain the Functional Resource Name of
the service triggering the event;

2) unless otherwise specified by the service using that procedure or by a derived
procedure, the associated event-value shall be empty;

3) this notification is discardable;

c) ‘recording buffer production status change’ (event-name)—some data may have
been lost because, during the service production session, a recording buffer
production status change occurred, which may imply that a Functional Resource
involved in the production process incurred a problem and therefore recording of
service production data stopped; this service production event applies only to
complete delivery mode (see 4.5.7.6):

1) the event-name of this event shall contain the Functional Resource Name of
the Functional Resource representing the recording buffer;

2) the associated event-value shall contain the production-status
parameter value of the recording buffer Functional Resource applicable since the
‘recording buffer production status change’ event triggered:

i) the first part of the path specifying the type to be used is ‘NotifyInvocation’:
‘eventValue’: ‘EventValue’: ‘qualifiedValues’: ‘SequenceOfQualifiedValue’:
‘SEQUENCE OF QualifiedValue’, where this sequence has the length 1;

ii) the only element of this sequence shall report the production-status of
the recording buffer; the composition of the sequence is ‘QualifiedValue’:
‘valid’: ‘TypeAndValue’: ‘Embedded’: ‘EMBEDDED PDV’: ‘SEQUENCE’:

– the first element of this sequence is ‘identification’: ‘syntax’: ‘OBJECT
IDENTIFIER’, where the value of the OID is specified in the service type
specific recording buffer Functional Resource;

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-31 February 2021

– the second element of the sequence is ‘data-value’: ‘OCTET STRING’,
where the value of this octet string is the BER encoded ProdStat type
specified in the registry https://sanaregistry.org/r/functional_resources;

3) this notification is discardable;

NOTE – Each recording buffer generates a ‘recording buffer production status
change’ event notification when the recording buffer detects the
occurrence of this event and then stores the event for subsequent retrieval
by BDD-using CSTSes operating in complete delivery mode. When a
BDD procedure instance reads the ‘recording buffer production status
change’ event notification from the recording buffer, that procedure
creates a NOTIFY invocation that reports to the user of a service
containing such procedure that a ‘recording buffer production production
change’ had occurred during the production process.

d) ‘recording buffer production configuration change’ (event-name)—some expected
data may have been lost and/or unexpected data may be found in the recording buffer
because, during the service production session, the configuration of Functional
Resources taking part in the production process was changed; this event applies only
to complete delivery mode (see 4.5.7.7):

1) the event-name of this event shall contain the Functional Resource Name of
the Functional Resource modeling the recording buffer;

2) unless otherwise specified by the service using that procedure or by a derived
procedure, the associated event-value shall be empty;

NOTE – Each recording buffer generates a ‘recording buffer production
configuration change’ event notification when the recording buffer
detects the occurrence of this event and then stores the event for
subsequent retrieval by BDD-using CSTSes operating in complete
delivery mode. When a BDD procedure instance reads the ‘recording
buffer production configuration change’ event notification from the
recording buffer, that procedure creates a NOTIFY invocation that reports
to the user of a service containing such procedure that a ‘recording buffer
production configuration change’ had occurred during the production
process.

e) ‘bdd recording buffer overflow’ (event-name)—some data may have been lost
because, during the service production session, a recording buffer overflow occurred,
and therefore recording of service production data stopped; this event applies only to
complete delivery mode (see 4.5.7.8);

1) the event-name of this event shall contain the Functional Resource Name of
the Functional Resource modeling the recording buffer;

2) unless otherwise specified by the service using that procedure or by a derived
procedure, the associated event-value shall be empty;

https://sanaregistry.org/r/functional_resources/

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-32 February 2021

3) this notification is discardable;

NOTE – Each recording buffer generates a ‘recording buffer overflow’ event
notification when the recording buffer detects the occurrence of this event
and then stores the event for subsequent retrieval by BDD-using CSTSes
operating in complete delivery mode. When a BDD procedure instance
reads the ‘recording buffer overflow’ event notification from the
recording buffer, that procedure creates a NOTIFY invocation that reports
to the user of a service containing such procedure that a ‘recording buffer
overflow’ had occurred during the production process.

f) ‘resource status change’ (event-name)—the resource status of a Functional
Resource involved in the production process has changed; this event applies only to
complete delivery mode (see 4.5.7.4);

1) the event-name of this event shall contain the Functional Resource Name of
the Functional Resource representing the production resource that experienced the
resource status change;

2) the event-value of the ‘resource status change’ event shall report the value of
the resource-status parameter of the Functional Resource after that status
has changed:

i) the first part of the path specifying the type to be used is ‘NotifyInvocation’:
‘eventValue’: ‘EventValue’: ‘qualifiedValues’: ‘SequenceOfQualifiedValue’:
‘SEQUENCE OF QualifiedValue’, where this sequence has the length 1;

ii) the second part of the path is ‘QualifiedValue’: ‘valid’: ‘TypeAndValue’:
‘Embedded’: ‘EMBEDDED PDV’: ‘SEQUENCE’

– the first element of this sequence is ‘identification’: ‘syntax’: ‘OBJECT
IDENTIFIER’, where the value of the OID is specified in the specific
Functional Resource;

– the second element of the sequence is ‘data-value’: ‘OCTET STRING’,
where the value of this octet string is either (a) the BER encoded ASN.1
type ResourceStat, when the production resource directly adopts the
standard ResourceStat type, or (b) a Functional Resource-specific
BER encoded resource-status type with resource-specific
refinements and/or substates

NOTE – The standard ResourceStat ASN.1 type and all Functional Resource-
specific resource-status ASN.1 types (if any) are specified in
SANA registry https://sanaregistry.org/r/functional_resources;

3) this notification is discardable;

https://sanaregistry.org/r/functional_resources/

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-33 February 2021

NOTES

1 This event is used to notify resource status changes of production resources
other than the recording buffer. Changes in the status of the recording buffer
are reported through the ‘production status change’ event that is common to
all CSTSes.

2 This event applies only to the complete delivery mode. In timely delivery
mode, the resource status changes of individual production resources are not
transferred through the return buffer; only changes to the aggregate
production status are transferred through the ‘production status change’ event.

g) ‘end of data’ (event-name)—the service provider has no more data to send;

1) as stated in 4.5.3.2.10 the conditions triggering the ‘end of data’ insertion, in
addition to the condition specified in 4.5.3.2.9, shall be defined by the service
using that procedure or by the derived procedure;

2) the event-name of this event shall contain the Functional Resource Name of
the service triggering the event;

3) the associated event-value shall be empty;

4) this notification is non-discardable;

NOTE – The end of data to be transferred is notified to the service user (see
4.5.4.2), but does not stop the procedure. The service user is expected to
terminate the procedure by invoking the STOP operation when receiving
this notification.

h) ‘buffered data delivery configuration change’ (event-name)—a dynamic
modification of the return-buffer-size parameter or the delivery-latency-limit
parameter has occurred:

1) the event-name of this event shall contain the procedure-name of the
procedure instance in which the event occurs;

2) the associated event-value shall contain the current values of the return-buffer-
size and delivery-latency-limit parameters;

i) the first part of the path specifying the type to be used is ‘NotifyInvocation’:
‘eventValue’: ‘EventValue’: ‘qualifiedValues’: ‘SequenceOfQualifiedValue’:
‘SEQUENCE OF QualifiedValue’, where this sequence has the length 2;

ii) the first element of this sequence shall report the return-buffer-size.
The composition of the first element of the sequence is one of the following:

(a) ‘QualifiedValue’: ‘valid’: ‘TypeAndValue’: ‘Embedded’: ‘EMBEDDED
PDV’: ‘SEQUENCE’:

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-34 February 2021

– the first element of this sequence is ‘identification’: ‘syntax’:
‘OBJECT IDENTIFIER’, where the value of the OID is
pBDDreturnBufferSize;

– the second element of the sequence is ‘data-value’: ‘OCTET
STRING’, where the value of this octet string is the BER encoded
PBDDreturnBufferSizeType type (see table 4-16);

(b) ‘QualifiedValue’: ‘unavailable’: ‘NULL’;

(c) ‘QualifiedValue’: ‘undefined’: ‘NULL’; or

(d) ‘QualifiedValue’: ‘error’: ‘NULL’;

iii) the second element of this sequence shall report the delivery-latency-
limit. The composition of the second element of the sequence is one of the
following:

(a) ‘QualifiedValue’: ‘valid’: ‘TypeAndValue’: ‘Embedded’: ‘EMBEDDED
PDV’: ‘SEQUENCE’:

– the first element of this sequence is ‘identification’: ‘syntax’:
‘OBJECT IDENTIFIER’, where the value of the OID is
pBDDdeliveryLatencyLimit;

– the second element of the sequence is ‘data-value’: ‘OCTET
STRING’, where the value of this octet string is the BER encoded
PBDDdeliveryLatencyLimitType type (see table 4-16);

(b) ‘QualifiedValue’: ‘unavailable’: ‘NULL’;

(c) ‘QualifiedValue’: ‘undefined’: ‘NULL’; or

(d) ‘QualifiedValue’: ‘error’: ‘NULL’;

NOTE – All relevant types are defined in F3.3 and F3.16.

3) this notification is discardable.

NOTES

1 A change of the configuration of a procedure can only be accomplished by
invoking the associated directive by means of the EXECUTE-DIRECTIVE
operation. Although the notification reporting the procedure configuration
change may be discarded, the service user is nonetheless informed of the
configuration change by the EXECUTE-DIRECTIVE return.

2 The Published Identifier for the above-defined new Event Identifier value for
the ‘buffered data delivery configuration change’ event (4.5.4.2.2.1.1 h)) is
specified in F3.16 as pBDDconfigurationChange.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-35 February 2021

4.5.4.2.2.1.2 The Published Identifiers for the above-defined new Event Identifier values
for the ‘data discarded due to excessive backlog’ event (4.5.4.2.2.1.1 b)), and the ‘end of
data’ event (4.5.4.2.2.1.1 g)) shall be registered in the SANA registry
https://sanaregistry.org/r/functional_resources on the eventsId branch of the
functionalResourceType Published Identifier for the CSTS’s Functional Resource Type
(see D6.2.3).

4.5.4.2.2.1.3 The Published Identifiers for the above-defined new Event Identifier values
for the ‘recording buffer production status change’ event (4.5.4.2.2.1.1 c)), the ‘recording
buffer production configuration change’ event (4.5.4.2.2.1.1 d)), and the ‘recording buffer
overflow’ event (4.5.4.2.2.1.1 e)) shall be registered in the SANA registry
https://sanaregistry.org/r/functional_resources on the eventsId branch of the
functionalResourceType Published Identifier for the associated derived recording buffer
Functional Resource Type (see D6.2.3).

4.5.4.2.2.1.4 The Published Identifiers for the above-defined new Event Identifiers value
for the ‘resource status change’ events (4.5.4.2.2.1.1 f)) shall be registered in the SANA
registry https://sanaregistry.org/r/functional_resources on the eventsId branch of the
functionalResourceType Published Identifier for the Functional Resource Type (see D6.2.3)
of each Functional Resource that comprises the production of the service..

4.5.4.2.2.2 notification-invocation-extension Extension

The NOTIFY invocation is not further extended, and therefore notification-
invocation-extension shall be set to ‘notUsed’.

4.5.5 CONFIGURATION PARAMETERS

The Buffered Data Delivery procedure configuration parameters that need to be configured
in the context of the procedure shall be as defined in table 4-16.

NOTE – For each configuration parameter, the table identifies the engineering unit (if
applicable), a cross reference to the use of the parameter in the specification of
the procedure, whether the parameter may be read and/or dynamically modified,
and the Parameter Identifier and type to be used in reporting the value of the
parameter.

https://sanaregistry.org/r/functional_resources/
https://sanaregistry.org/r/functional_resources/
https://sanaregistry.org/r/functional_resources/

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-36 February 2021

Table 4-16: Buffered Data Delivery Procedure Configuration Parameters

Parameters
Cross-

Reference Readable

Dynami-
cally

modify-
able

Configuration Parameter
Identifier and Type (F3.16)

return-
buffer-size
(in number of
TRANSFER-
DATA and/or
NOTIFY
invocations the
buffer will
accommodate)

4.5.3.2.7.3 Yes Yes pBDDreturnBufferSize
PBDDreturnBufferSizeType

delivery-
latency-
limit (in
seconds)

4.5.3.2.7.2 Yes Yes pBDDdeliveryLatencyLimit
PBDDdeliveryLatencyLimitType

delivery-
mode

4.5.2.2.2.1,
4.5.3.2.6 Yes No pBDDdeliveryMode

PBDDdeliveryModeType

NOTE – A notification of the occurrence of the pBDDconfigurationChange, when
the BDD procedure is operating in real time delivery mode, will be inserted into the
return buffer by that procedure. A delay in the reporting of this event is kept to a
minimum in that the return buffer is released to the underlying communications
service as soon as such a notification is inserted into the return buffer. However,
that notification may be discarded in case of backpressure on the link to the CSTS
user. If the service using the Buffered Data Delivery procedure ensures that this
event is notified to the service user rather than possibly being discarded, the service
also needs to use a procedure that contains a NOTIFY operation and will,
regardless of potential backpressure, never discard a notification. For example, the
service could use the Notification procedure, through which the user could
subscribe to the pBDDconfigurationChange event.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-37 February 2021

4.5.6 PROCEDURE STATE TABLE

Table 4-17: Buffered Data Delivery Procedure State Table

No. Incoming Event State 1
(‘inactive’)

State 2
(‘active’)

1 (StartInvocation) IF
 “positive result”
THEN
 (+StartReturn) 2
 ‘initialize return buffer’
 set “data ended” to FALSE
ELSE
 (-StartReturn)
ENDIF

‘procedure to association abort ‘protocol
error’’
 1

2 (StopInvocation) ‘procedure to association abort
‘protocol error’’

IF
 “positive result”
THEN
 IF
 (NOT “buffer empty”)
 THEN
 {pass buffer contents}
 ENDIF
 set “data ended” to FALSE
 ‘stop all response timers’
 (+StopReturn)
 1
ELSE
 (-StopReturn)
ENDIF

3 ‘data available’ Not applicable IF
 “return buffer full”
THEN
 {pass buffer contents}
 IF
 “backpressure”
 THEN
 ‘Increment buffer size’
 ‘notify ‘data discarded’ / ’empty’’
 ‘copy non-discardable notifications’
 ENDIF
 ‘insert data in return buffer’
 {init and start release timer}
ELSE
 IF
 “buffer empty”
 THEN
 {init and start release timer}
 ENDIF
 ‘insert data in return buffer’
 IF
 “return buffer full”
 THEN
 {attempt pass buffer contents}
 ENDIF
ENDIF

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-38 February 2021

No. Incoming Event State 1
(‘inactive’)

State 2
(‘active’)

4 ‘data read from recording buffer’ Not applicable IF
 “buffer empty”
THEN
 {init and start release timer}
ENDIF
‘insert data in return buffer’
IF
 “return buffer full”
THEN
 {transmit buffer}
ENDIF

5 ‘real-time, release timer expired’ Not applicable {pass buffer contents}
IF
 “backpressure”
THEN
 ‘increment buffer size’
 ‘notify ‘data discarded’ / ’empty’’
 ‘copy non-discardable notifications’
 {init and start release timer}
ENDIF

6 ‘complete, release timer expired’ Not applicable {transmit buffer}

7 ‘end of data’ Not applicable IF
 (NOT “data ended”)
THEN
 ‘notify ‘end of data’ / ‘empty’’
 {transmit buffer}
 set “data ended” to TRUE
ENDIF

8 ‘production status change ‘yyy’’
[when Buffered Data Delivery
procedure is in real-time delivery
mode]

Not applicable IF
 “return buffer full”
THEN {pass buffer contents}
 IF
 “backpressure”
 THEN
 ‘increment buffer size’
 ‘notify ‘data discarded’ / ’empty’’
 ‘copy non-discardable notifications’
 ENDIF
ENDIF
‘notify ‘production status change’ / ‘yyy’’ in
return buffer
{attempt pass buffer contents}

9 ‘production status change ‘yyy’’
[when Buffered Data Delivery
procedure is in complete
delivery mode]

Not applicable ‘notify ‘production status change’ / ‘yyy’’ in
return buffer
{transmit buffer}

10 ‘production configuration
change’ [when Buffered Data
Delivery procedure is in real-time
delivery mode]

Not applicable IF
 “return buffer full”
THEN {pass buffer contents}
 IF
 “backpressure”
 THEN
 ‘increment buffer size’
 ‘notify ‘data discarded’ / ’empty’’
 ‘copy non-discardable notifications’
 ENDIF
ENDIF
‘notify ‘production configuration change’ /
’empty’’ in return buffer
{attempt pass buffer contents}

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-39 February 2021

No. Incoming Event State 1
(‘inactive’)

State 2
(‘active’)

11 ‘production configuration
change’ [when Buffered Data
Delivery procedure is in
complete-time delivery mode]

Not applicable ‘notify ‘production configuration change’ /
’empty’’ in return buffer
{transmit buffer}

12 ‘buffered data delivery
configuration change’ [when
Buffered Data Delivery
procedure is in real-time delivery
mode]

Not applicable IF
 “return buffer full”
THEN {pass buffer contents}
 IF
 “backpressure”
 THEN
 ‘increment buffer size’
 ‘notify ‘data discarded’ / ’empty’’
 ‘copy non-discardable notifications’
 ENDIF
ENDIF
‘notify ‘buffered data delivery configuration
change’ / ’empty’’ in return buffer
{attempt pass buffer contents}

13 ‘buffered data delivery
configuration change’ [when
Buffered Data Delivery
procedure is in complete
delivery mode]

Not applicable ‘notify ‘buffered data delivery configuration
change’ / ’empty’’ in return buffer
{transmit buffer}

14 ‘invalid PDU ‘xxx’’ ‘procedure to association abort
‘xxx’’

‘procedure to association abort ‘xxx’’
 1

15 ‘terminate procedure’ ‘terminate itself’ ‘terminate itself’

Table 4-18: Procedure State Table Incoming Event Description References

Event Reference
‘data available’ 4.5.3.3.1
‘data read from recording buffer’ 4.5.3.4.1

‘end of data’ 4.5.3.2.7.4, 4.5.3.2.8, 4.5.3.2.9, 4.5.3.2.10,
4.5.4.2.2.1.1

‘production status change ‘yyy’’ B2.2.4. ‘yyy’ is one of the values specified in
table B-1.

‘production configuration change’ 3.11.2.2.3.2 b)

‘buffered data delivery configuration change’ 4.5.4.2.2.1.1

‘real-time, release timer expired’ 4.5.3.2.7.2

‘complete, release timer expired’ 4.5.3.2.7.2

‘invalid PDU ‘xxx’’ 3.2.3.6, 4.2.2.4. ‘xxx’ is one of the diagnostic
values specified in 4.2.2.5.

‘terminate procedure’ 4.2.3, internal event from the Association
Control procedure to all other procedures of the
service instance in response to a protocol abort,
a PEER-ABORT, or an UNBIND

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-40 February 2021

Table 4-19: Procedure State Table Predicate Descriptions

Predicate Evaluates to TRUE if
“return buffer full” The return buffer cannot accommodate the currently available data or

notification.

“buffer empty” The return buffer does not contain any data or notification.

“complete” Delivery mode is complete.

“real-time” Delivery mode is real-time.

“positive result” No reason for sending a negative return has been detected; that is,
for the START invocation, none of the conditions in 4.5.4.1.3.1
applies, and for the STOP invocation, none of the conditions in
3.3.2.7.1 applies.

Table 4-20: Procedure State Table Boolean Flags

Flag Set to TRUE if
“backpressure” The underlying communications service does not accept the contents

of the return buffer because of backpressure.

“data ended” The service provider has sent the ‘end of data’ notification.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-41 February 2021

Table 4-21: Procedure State Table Simple Action References

Name References
‘increment buffer size’ 4.5.3.3.5
‘set release timer to delivery
latency limit’

4.5.3.2.7.2

‘start release timer’ 4.5.3.2.7.4

‘stop release timer’ 4.5.3.6 c)

‘stop all response timers’ 4.5.3.6 c)

‘initialize return buffer’ 4.5.3.2.1

‘copy non-discardable
notifications’

4.5.3.3.5

‘notify ‘xxx’ / ’yyy’’ 4.5.3.2.4, (NotifyInvocation) with event-name set to ‘xxx’ and
event-value set to ‘yyy’. In case a notification does not use an
event-value, ‘yyy’ shall be set to ‘empty’

‘submit content of return
buffer to underlying
communications service’

4.5.3.2.7.4

‘procedure to association
abort ‘xxx’’

4.2.2.3, 4.2.2.5, raise ‘procedure to association abort ‘xxx’’ event with
diagnostic set to ‘xxx’ to the Association Control procedure

‘insert data in return buffer’ 4.5.3.2.7

‘reinitialize return buffer
using the nominal size’

4.5.3.3.5

‘terminate itself’ 4.5.3.6

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-42 February 2021

Table 4-22: Procedure State Table Compound Action Definitions

Name Actions Performed

{attempt pass buffer
contents}

‘submit contents of return buffer to underlying communications
service’
IF
 successful
THEN
 ‘stop release timer’
 ‘reinitialize return buffer using the normal size’
ENDIF

{pass buffer contents}

‘stop release timer’
‘submit contents of return buffer to underlying communications
service’
IF
 successful
THEN
 set “backpressure” to FALSE
ELSE
 set “backpressure” to TRUE
ENDIF
‘reinitialize return buffer using the normal size’

{init and start release timer} ‘set release timer to delivery latency limit’
‘start release timer’

{transmit buffer}

‘stop release timer’
‘submit the contents of return buffer to underlying communications
service’ until accepted by that service
‘reinitialize return buffer using the nominal size’

4.5.7 REQUIREMENTS FOR RECORDING BUFFERS FOR USE BY THE
BUFFERED DATA DELIVERY PROCEDURE

4.5.7.1 Each recording buffer type shall be represented by an associated Functional
Resource Type. A CSTS type using the BDD procedure or a procedure derived from it shall
specify the associated recording buffer type and the associated Functional Resource Type.

NOTE – The Functional Resource Type shall be registered on the
crossSupportFunctionalities subbranch of the OID tree structure (see figure K-6).
More information regarding the registration of derived recording buffer
Functional Resources and the associated events and parameters can be found in
reference [I3].

4.5.7.2 The time between data being inserted into the recording buffer by the production
process and availability of this data for retrieval from this buffer for transfer to a service user
shall be kept to a minimum.

4.5.7.3 Multiple service instances requiring access to data generated by the same
production process shall be able to share the same recording buffer.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-43 February 2021

4.5.7.4 The production process shall insert acquired service production data units and
service production events as emitted by the Functional Resources taking part in the
production process in the form of ‘resource status change’ notifications into the recording
buffer.

NOTE – The formal specification of the Functional Resource type specific ‘resource status
change’ events is provided in the Functional Resource registry
https://sanaregistry.org/r/functional_resources. The format in which these events
are captured in the recording buffer is a matter of local implementation and not
prescribed by this Recommended Standard.

4.5.7.5 The CSTS using the BDD procedure shall specify how the recording buffer shall
derive an aggregate production status from service production events such as the resource
status change events reported by the Functional Resources representing the production
process. Any changes of this aggregate ‘recording buffer production status’ shall be stored in
the recording buffer as specified in 4.5.7.6.

4.5.7.6 If the recording buffer detects that the recording buffer production status has
changed, the recording buffer shall

a) store a ‘recording buffer production status change’ event notification in the recording
buffer (see 4.5.4.2.2.1.1 c));

b) emit an ‘fr recording buffer production status change’ event.

NOTE – Given that the ‘recording buffer production status change’ event is
notifiable, a service including the Notify procedure could subscribe to it.
However, the production process, and therefore the filling of the
recording buffer, may take place well before a service instance that might
subscribe to such service production event is bound. Such a service
instance might not even exist at the time the ‘recording buffer production
status change’ occurs, and, in general, it is therefore not useful if services
using a recording buffer implement the capability to be notified of the
‘recording buffer production status change’ event in real-time.

4.5.7.7 If the recording buffer detects that the recording buffer production configuration
has changed, the recording buffer shall

a) store a ‘recording buffer production configuration change’ event notification in the
recording buffer (see 4.5.4.2.2.1.1 c));

b) emit an ‘fr recording buffer production configuration change’ event.

https://sanaregistry.org/r/functional_resources/

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-44 February 2021

NOTE – Given that the ‘recording buffer production configuration change’ event
is notifiable, a service including the Notify procedure could subscribe to
it. However, the production process, and therefore the filling of the
recording buffer, may take place well before a service instance that might
subscribe to such a service production event is bound. Such a service
instance might not even exist at the time the recording buffer production
status change occurs, and, in general, it is therefore not useful if services
using a recording buffer implement the capability to be notified of the
‘recording buffer production configuration change’ event in real-time.

4.5.7.8 If the recording buffer overflows, the recording buffer shall

a) store a ‘bdd recording buffer overflow’ event notification in the recording buffer (see
4.5.4.2.2.1.1 e)):

1) the latest data unit previously stored on the recording buffer shall be deleted if
that is necessary to have sufficient storage space for storing the ‘bdd recording
buffer overflow’ event;

2) following this event, no further service production data units shall be stored on
the recording buffer;

NOTE – It is normally expected that the recording buffer is sufficiently large to
hold all data that might be accumulated during several service production
sessions. The time span over which data is retained in the recording
buffer, the policy for deleting data from the recording buffer, and the
conditions under which the recording buffer begins to accept data
following an overflow condition are outside the scope of this
Recommended Standard. In general, this may be specified by the CSTS
using a specific recording buffer type, or the service provider and service
user will agree on a data custody transfer protocol.

b) emit an ‘fr recording buffer overflow’ event.

NOTE – Given that the ‘fr recording buffer overflow’ event is notifiable, a service
including the Notify procedure could subscribe to it. However, the
production process, and therefore the filling of the recording buffer, may
take place well before a service instance that might subscribe to the event
is bound. Such a service instance might not even exist at the time the
overflow occurs, and, in general, it is therefore not useful if services using
a recording buffer implement the capability to be notified of the recording
buffer overflow in real-time.

4.5.7.9 If the resource-status of the recording buffer changes, the recording buffer
shall emit an ‘fr recording buffer resource status change’ event.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-45 February 2021

NOTES

1 The recording buffer is itself a Functional Resource, and as such maintains a
resource-status of its own (see 2.2.2.2).

2 Given that the ‘fr recording buffer resource status change’ event is notifiable, a
service including the NOTIFY procedure could subscribe to it. However, the
production process, and therefore the filling of the recording buffer, may take place
well before a service instance that might subscribe to the event is bound. Such a
service instance might not even exist at the time the resource status changes, and, in
general, it is therefore not useful if services using a recording buffer implement the
capability to be notified of the recording buffer resource status change in real-time.

4.5.7.10 The recording of data and events shall be performed as specified for the given
recording buffer type (see 4.5.7.1) and as determined by the controlling service agreement
and service package, regardless of the state of any service instance and regardless of whether
an association with any service user is established.

NOTE – The events recorded in the recording buffer relate only to the recording buffer itself
and to the production process that needs to be active to produce the data to be stored
in the recording buffer. Such service production events do not have any impact on
the CSTS production status reported by the Functional Resource representing the
CSTS instance that at some point in time will retrieve the data and events of interest
from the recording buffer. The CSTS production status always refers to the current
status of the CSTS instance while the recording buffer production status is the
aggregate production status observed and captured during the production process
that filled the recording buffer. Typically, the CSTSes that will transfer the data
stored earlier in the recording buffer will not be bound or not even exist at the time
the service-production-related events to be stored in the recording buffer occur.
However, when a CSTS includes the BDD procedure or a procedure derived from it,
and the recording buffer type is specified to record service production events and to
record the ‘recording buffer production status change’ events, a CSTS may specify
that the procedure used to read from the recording buffer shall extract such events
from that buffer and report them synchronously with the data. However, a CSTS,
regardless of its specification, will only be able to provide such notifications if the
local implementation of the Functional Resources modeling the production process
emit the required event notifications.

4.5.7.11 The ‘fr recording buffer production status change’, ‘fr recording buffer production
configuration change’, ‘fr recording buffer resource status change’, and ‘fr recording buffer
overflow’ events for each derived recording buffer Functional Resource Type shall be
registered under the eventsId branch of the functionalResourceType Published Identifier for
that derived recording buffer Functional Resource Type (see D6.2.3).

4.5.7.12 The Functional Resources that are relevant for the production process generating
the data to be captured in a given recording buffer type should emit ‘resource status change’
event notifications, which will then be stored in the recording buffer.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-46 February 2021

4.5.7.13 The CSTS specification shall specify the recording buffer type to be used for that
service type and the Functional Resources of which the ‘resource status change’ event
notifications shall be captured in the recording buffer. Such events shall be inserted into the
recording buffer after the last data acquired before the occurrence of the event and before the
first data acquired following the event.

NOTE – The kind of notifications addressed in 4.5.7.12 will not be defined as events of
the Functional Resource representing the recording buffer, but as events notified
by the individual Functional Resources being part of the production process.

4.5.7.14 If a BDD-derived procedure extends the recording buffer Functional Resource to
have buffer-operation-related events beyond the recording buffer overflow that are to be
emitted in real-time, then those events shall be specified as notifiable events of the derived
recording buffer Functional Resource and registered under the eventsId branch of the
functionalResourceType Published Identifier for that derived recording buffer Functional
Resource Type.

4.5.7.15 A Functional Resource Type representing a recording buffer shall have a queriable
recording-buffer-size parameter that specifies the storage capacity of the recording
buffer. The recording-buffer-size parameter for each derived recording buffer
Functional Resource shall be registered under the parametersId branch of the
functionalResourceType Published Identifier for that derived recording buffer Functional
Resource Type (see D6.2.3).

NOTE – Given that the recording-buffer-size parameter is queriable, it is
accessible to the GET operation as, for example, contained in the Information
Query procedure. In particular, monitoring of this parameter by the service
including the Buffered Data Delivery procedure, or a procedure derived from it,
is possible if that service includes a procedure containing the GET operation as
does, for example, the Information Query procedure.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-47 February 2021

4.6 DATA PROCESSING

4.6.1 VERSION NUMBER

The version number of this procedure is 2.

4.6.2 DISCUSSION

4.6.2.1 Purpose

The purpose of the Data Processing procedure is to provide transfer of data units from the
service user to the service provider for processing of the data units by the service provider.
This procedure does neither define the data units being transferred nor the processing to be
performed by the service provider. It is assumed, however, that processing is part of service
production and will be specified by the service using this procedure.

The Data Processing procedure is abstract and cannot be implemented directly because the
specification is incomplete. To be implementable, derived procedures must provide the
missing specifications.

4.6.2.2 Concept

The Data Processing procedure supports transfer of data units from the service user to the
service provider by means of PROCESS-DATA operations. When the service provider
receives a PROCESS-DATA invocation, it stores the invocation on an Input Queue and
processes the contained data unit as soon as possible. The service provider processes the data
sequentially in the order transmitted by the service user, processing only one unit at any
point in time. This means that a CSTS will normally comprise a single instance of this
procedure. Derived procedures may specify more complex data processing behaviors. The
specification of this procedure offers the means needed in case a CSTS will comprise more
than one instance of a procedure derived from the Data Processing Procedure. Such a service
specification will then need to define, in particular, how concurrently executing procedure
instances shall interact with the shared underlying service production in a conflict-free
manner (see 4.6.7).

The ability of the service provider to process the data depends on the production status
described in more detail in annex B. If production-status is ‘operational’, the service
provider is able to perform data processing; otherwise, the service provider is unable to
perform data processing. As long as production-status is ‘operational’, the service
provider removes PROCESS-DATA invocations from the Input Queue and processes the
enclosed data unit; otherwise, PROCESS-DATA invocations already queued remain in the
queue until production-status becomes ‘operational’, until the service user stops the
procedure, or until the associated service instance is aborted or unbound.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-48 February 2021

The service provider will inform the service user by means of a NOTIFY operation if
production-status changes and the procedure instance is in the ‘active’ state.
However, change of production-status to ‘interrupted’ does not necessarily mean that
the user needs to take action to recover from this situation. If production-status
changes to ‘interrupted’ while no PROCESS-DATA invocations are queued for processing,
then there is a chance that production-status reverts back to ‘operational’ in time
before the service user is actually affected by production-status presently being
‘interrupted’. The notification that production-status is ‘interrupted’ has the purpose
to make the service user aware that the processing of the data unit will be delayed until
production-status becomes ‘operational’ and that the input queue might fill up if
further PROCESS-DATA operations are invoked.

Successful completion of processing is reported to the service user by means of a NOTIFY
operation only if a report has been explicitly requested for that data unit by the service user.
As to enable requesting such report, this procedure has extended the PROCESS-DATA
operation (see 4.6.4.1.4). Failure of processing is always notified to the service user.

In order to enable the identification of the data unit for which a report is issued, the
PROCESS-DATA invocation that transfers the data unit also includes the data-unit-id
parameter the value of which is used to refer to that data unit in notifications sent to the
service user. The service user can freely choose the data-unit-id parameter value, and
the service provider does not check if the identification of the related data unit is unique. If
such uniqueness is required, it has to be ensured by the service user.

The method by which the size of the Input Queue for incoming PROCESS-DATA operations
is configured is defined by a derived procedure or by the service using this procedure,
possibly delegating the definition to service management. Handling of a queue overflow
condition is left undefined by this procedure, and because such a condition cannot be
excluded, this procedure specification remains abstract and cannot be directly implemented.
In order to be implementable, derived procedures must provide the missing specification.

As this procedure neither specifies the content of the data units transferred for processing nor
the type of processing to be performed, it does not specify what processing failures can occur
and need to be notified to the service user, with the exception of production status changes that
affect processing of data units. If the occurrence of a failure causes more than one data unit to
be discarded, then the service provider sends only a single notification. All NOTIFY operations
issued include information from which the service user can derive the state of processing.

The service user can terminate processing of data units at any time by invocation of the
STOP operation. When PROCESS-DATA invocations are still queued for processing at the
time the STOP invocation is received, the service provider discards all PROCESS-DATA
invocations stored in the queue, that is, all invocations for which processing has not yet
started, but the service provider completes processing of the data unit for which processing
has already started, if that is possible. The user can avoid inadvertent discarding of data units
by requesting a processing report for the last data unit in the sequence and not invoking the
STOP operation before that processing report has been received.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-49 February 2021

4.6.3 BEHAVIOR

4.6.3.1 Starting

The service provider shall send a positive START return and perform the START operation
invoked by the service user except if

a) the production-status is ‘halted’, in which case the START operation shall be rejected
by sending a negative START return with the diagnostic value ‘out of service’; or

b) the procedure is in State 2 (‘active’), in which case the procedure shall request the
Association Control procedure to abort the association with setting the diagnostic
value to ‘protocol error’.

NOTE – By invoking the START operation, the service user requests that the service
provider prepares to receive PROCESS-DATA invocations for processing.

4.6.3.2 Transfer and Queuing of PROCESS-DATA Invocations

4.6.3.2.1 If the service provider receives a PROCESS-DATA invocation, then the
invocation shall be queued until either processing of the enclosed data unit begins or the
invocation is discarded.

NOTE – The service user will invoke the PROCESS-DATA operation for each data unit
to be transferred to the service provider for processing.

4.6.3.2.2 The provider shall accept any value of the data-unit-id parameter received
with a PROCESS DATA invocation and store it for later use in notifications related to the
processing of the given data unit.

4.6.3.2.3 The size of the Input Queue for incoming PROCESS-DATA operations expressed
as the number of PROCESS-DATA invocations the Input Queue can hold shall be defined
using the input-queue-size procedure configuration parameter (see 4.6.5).

NOTE – The Input Queue decouples the timing of the processing of the PROCESS-DATA
invocations from the transfer of those invocations.

4.6.3.2.4 The service provider shall queue received PROCESS-DATA invocations
regardless of the value of production-status.

NOTE – If production-status is not ‘operational’, PROCESS-DATA invocations
will not be processed (see 4.6.3.3), and the queue may fill up.

4.6.3.2.5 If the queue is full at the time the service provider receives a PROCESS-DATA
invocation, the behavior of the provider is not defined by this procedure. Because of this
missing specification, this procedure is abstract and cannot be directly implemented. To be
implementable, derived procedures shall provide the missing specification.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-50 February 2021

4.6.3.3 Processing of Data Units

4.6.3.3.1 The service provider shall remove PROCESS-DATA invocations from the Input
Queue and process the data units included as soon as possible, as long as production-
status is ‘operational’.

4.6.3.3.2 When the procedure has performed its processing (if any) of the data unit, the
(processed) data unit shall be submitted to the associated service production functions (see
4.6.7). The data unit, as submitted to service production, shall consist of

a) the contents of the data and data-unit-id parameters of the PROCESS-DATA
invocation;

b) the procedure-name of the Data Processing procedure; and

c) the service-instance-identifier of the service instance using the Data
Processing procedure.

4.6.3.3.3 If production-status changes to a value other than ‘operational’, then the
service provider shall suspend processing of data units until production-status
changes to ‘operational’ again.

NOTES

1 Processing of data units for which processing has already started at the time
production-status changes to ‘interrupted’ or ‘halted’ will fail and processing
of such data units will not be resumed (see 4.6.3.3.6).

2 PROCESS-DATA invocations for which processing has not started remain queued
and will be processed when production-status changes to ‘operational’.

4.6.3.3.4 The service provider shall process the data units sequentially in the order in which
they were received.

NOTES

1 The term sequential processing as used here excludes all concurrency and in particular
means that, at most, one data unit is being processed by the procedure at any point in
time. However, there may be more than one data unit being processed by the underlying
service production.

2 It is assumed that a CSTS type using the Data Processing procedure comprises only a
single instance of a derived procedure. Should that service type need to permit several
instances of a derived procedure executing concurrently, it will need to specify how
those procedure instances shall interact with the underlying shared service production
in a conflict-free manner.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-51 February 2021

4.6.3.3.5 The data-unit-id parameter value of the PROCESS-DATA invocation shall
be used as a reference to data units in any NOTIFY invocations sent by the service provider
to the service user.

4.6.3.3.6 If any data unit has started but has not completed processing at the time
production-status changes from ‘operational’ to ‘interrupted’ or ‘halted’, the service
provider shall discard any data unit being processed by the procedure and direct the
underlying service production to discard any in-process data units that are associated with the
service instance that is executing the procedure.

NOTES

1 The requirement stated in 4.6.3.3.6 is valid only if a CSTS type comprising a procedure
derived from the Data Processing procedure uses only a single instance of that derived
procedure. If the CSTS type permits more than one instance of the derived procedure
executing concurrently, it needs to specify the effect that the request to service
production to discard data units emitted by an individual procedure instance shall have.

2 How service production can be requested to discard data units for which processing
has started depends on the specific implementation and is therefore outside the scope
of this Recommended Standard. The only assumption is that requesting the
underlying service production to discard data units, although there are currently no
data units being processed by service production, is not regarded an error condition.

4.6.3.4 Positive Feedback

The ‘data unit processing completed’ event may be notified by service production or may
determined by a procedure derived from the Data Processing procedure itself if such a
procedure processes the data unit without involving service production. Every CSTS
therefore has to specify under which condition(s) the ‘data unit processing completed’ shall
trigger in the context of the service.

Upon the ‘data unit processing completed’ event, and if the value of the process-
completion-report parameter (see 4.6.4.1.4) in the associated PROCESS-DATA
invocation was ‘produce report’, the service provider shall notify the service user with Event
Identifier ‘data unit processing completed’.

NOTE – This procedure defines only one report to be issued upon occurrence of the ‘data
unit processing completed’ event. Derived procedures might define additional
processing steps, the completion of which should be reported.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-52 February 2021

4.6.3.5 Notifications

4.6.3.5.1 Notification of Production Status Changes

4.6.3.5.1.1 The service provider shall notify the service user whenever production-
status changes independent of the effect this change has on the processing of data units.
To that end, the service provider shall invoke the NOTIFY operation with the event-name
set to ‘production status change’ and the event-value set to the value of production-
status of the Functional Resource representing the affected service instance after the
change has occurred.

NOTES

1 When production-status changes to ‘interrupted’ or ‘halted’ this may imply
that processing of a data unit fails; whether this is the case or not can be derived from
the information provided in the notification.

2 Whether a data unit has started but not completed processing and will therefore be
discarded can be derived from the information provided in the notification.

3 The notification of production-status having changed to ‘interrupted’ makes
the service user aware that the processing of any data unit on the Input Queue will be
delayed until production-status becomes ‘operational’ and that therefore the
Input Queue might fill up if further PROCESS-DATA operations are invoked.

4.6.3.5.2 Notification of Production Configuration Changes

The service provider shall notify the service user when the production configuration is
changed (see 3.11.2.2.3.2 b) while the service is bound.

4.6.3.5.3 Notification of Procedure Configuration Changes

The service provider shall notify the service user when the value of a dynamically modifiable
configuration parameter is changed while the service is bound.

4.6.3.6 Stopping

NOTE – The service user will invoke the STOP operation to inform the service provider
that the service user is stopping the sending of PROCESS-DATA invocations.

4.6.3.6.1 When an incoming STOP invocation is accepted, the service provider shall send a
positive STOP return, and the procedure state shall change to State 1 (‘inactive’).

4.6.3.6.2 When receiving a STOP invocation while there are PROCESS-DATA invocations
in the service provider’s Input Queue, the service provider shall

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-53 February 2021

a) discard any PROCESS-DATA invocations for which processing has not yet started;
notifications shall not be issued for the data units enclosed in those PROCESS-DATA
invocations; and

b) complete processing of the data units, if any, for which processing has already
started.

NOTE – The procedure being stopped, the service provider cannot notify the service
user when the remaining data unit completes processing.

4.6.3.7 Terminating

Upon receipt of a ‘terminate procedure’ event from the Association Control procedure, the
procedure shall terminate by

a) completing processing of any data unit for which processing has already started;

b) discarding all PROCESS-DATA invocations for which processing has not yet started;

c) discarding pending notifications; and

d) releasing the resources.

4.6.3.8 Aborting

4.6.3.8.1 When detecting a condition that requires the procedure to request the Association
Control procedure to abort the association, the procedure shall

a) complete processing of any data units for which processing has already started;

b) discard all PROCESS-DATA invocations for which processing has not yet started;
that is, flush the service provider’s Input Queue;

c) discard any pending notifications;

d) request the Association Control procedure to abort the association providing the
relevant diagnostic value as specified in 3.6.2.2.1.2; and

e) release the resources.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-54 February 2021

4.6.4 REQUIRED OPERATIONS

Table 4-23: Data Processing Procedure Required Operations

Operations Source Extended Refined
Procedure

Blocking/Non-Blocking
START Common N N Blocking
STOP Common N N Blocking
PROCESS-DATA Common Y N Non-Blocking
NOTIFY Common Y N Non-Blocking

NOTE – Although there are no extensions or refinements to the START operation, this
procedure defines an additional reason for returning a negative result with the
diagnostic value ‘out of service’, as specified in 4.6.3.1 a).

4.6.4.1 PROCESS-DATA (Unconfirmed)

4.6.4.1.1 General

NOTE – Subsection 3.10.2.2.4 stipulates that a procedure using the PROCESS-DATA
operation refines or extends the data parameter of that operation. The Data
Processing procedure does not do that. The data syntax definition is left to a
derived procedure or the service using this procedure.

The Data Processing procedure shall extend the PROCESS-DATA operation defined in 3.10
by adding one parameter to the invocation. The Data Processing procedure uses the
unconfirmed variant of the PROCESS-DATA operation.

4.6.4.1.2 Operation Parameters Definitions

NOTE – Table 4-24 shows the extension parameters of the PROCESS-DATA operation
defined by this procedure.

Table 4-24: PROCESS-DATA Extension Parameter

Extension Parameters Invocation

process-completion-report M

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-55 February 2021

4.6.4.1.3 Extension Parameter Syntax

The type DataProcProcDataInvocExt, as defined in F3.8, shall specify the syntax of
the extension parameter of the PROCESS-DATA invocation.

4.6.4.1.4 process-completion-report

The process-completion-report parameter shall specify whether the service
provider shall invoke a NOTIFY operation to inform the service user that processing of the
data unit enclosed in the PROCESS-DATA invocation has been completed successfully.

4.6.4.2 NOTIFY (Unconfirmed)

4.6.4.2.1 General

The Data Processing procedure shall extend the NOTIFY operation defined in 3.11 through
the addition of six parameters to the invocation and through adding two permissible Event
Identifier values to the event-name parameter.

4.6.4.2.2 Operation Parameters Definitions

NOTE – The most precise and meaningful reporting will only be obtained if the service user
applies sequential numbers with a fixed increment for identifying the data units.

4.6.4.2.2.1 Overview

Table 4-25 shows the extension parameters of the NOTIFY operation defined by this procedure.

Table 4-25: NOTIFY Extension Parameters

Extension Parameters Invocation

data-unit-id-last-processed M

data-processing-status C

data-processing-start-time C

data-unit-id-last-OK M

data-processing-stop-time C

production-status C

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-56 February 2021

4.6.4.2.2.2 Extension Parameter Syntax

The type DataProcNotifyInvocExt, as defined in F3.8, shall specify the syntax of the
extension parameters of the NOTIFY invocation.

4.6.4.2.2.3 data-unit-id-last-processed

For all notifications, the data-unit-id-last-processed parameter shall be present.
Its value shall be set as follows:

a) if the service provider has not yet processed or attempted to process any data from the
service user during the given association established by the service instance using this
instance of the Data Processing procedure, the value of the data-unit-id-
last-processed parameter shall be set to ‘noDataProcessed’, that is, ‘null’;

b) otherwise, the data-unit-id-last-processed parameter shall specify the
identifier of the data unit, that is, the value of the data-unit-id parameter of that
data unit that the service provider most recently processed or attempted to process,
regardless of whether the data was successfully processed or an exception occurred.

4.6.4.2.2.4 data-processing-status

4.6.4.2.2.4.1 For all notifications, if the value of the data-unit-id-last-
processed parameter is ‘noDataProcessed’, the data-processing-status
parameter shall not be present.

4.6.4.2.2.4.2 Whenever the value of the data-unit-id-last-processed parameter
is not ‘noDataProcessed’, the data-processing-status parameter shall be present
and shall contain one of the following values representing the processing state of the data
identified by data-unit-id-last-processed:

a) ‘successfully processed’—the processing of the data completed; that is, the data is
guaranteed to have been processed nominally;

b) ‘processing interrupted’—the processing of the data started but did not complete
because production-status became ‘interrupted’ or ‘halted’;

c) ‘processing started’ —the processing of the data started but did not yet complete.

4.6.4.2.2.4.3 Additional values of the data-processing-status can be introduced
by using dataProcessingStatusExtension (see F3.8), if needed in procedures
derived from the Data Processing procedure.

4.6.4.2.2.4.4 The Data Processing procedure does not extend the data-processing-
status parameter, and therefore the CHOICE dataProcessingStatusExtension
must not be selected (see F3.8).

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-57 February 2021

4.6.4.2.2.5 data-processing-start-time

4.6.4.2.2.5.1 For all notifications, if the data-unit-id-last-processed is
‘noDataProcessed’, the data-processing-start-time parameter shall not be present.

4.6.4.2.2.5.2 Whenever data-unit-id-last-processed is not ‘noDataProcessed’,
the data-processing-start-time parameter shall be present and shall contain the
time at which the service provider started to process the data identified by the data-unit-
last-processed parameter.

4.6.4.2.2.6 data-unit-id-last-OK

For all notifications, the data-unit-id-last-OK parameter shall be present. Its value
shall be set as follows:

a) if no data have been successfully processed during the given association established
by the service instance using this instance of the Data Processing procedure, the value
of the data-unit-id-last-OK parameter shall be set to
‘noSuccessfulProcessing’;

b) otherwise, the data-unit-id-last-OK parameter shall specify the sequence
number, that is, the value of the data-unit-id parameter of the most recent data
unit that was successfully processed.

4.6.4.2.2.7 data-processing-stop-time

4.6.4.2.2.7.1 For all notifications, if the data-unit-id-last-OK is
‘noSuccessfulProcessing’, the data-processing-stop-time parameter shall not be
present.

4.6.4.2.2.7.2 Whenever data-unit-id-last-OK is not ‘noSuccessfulProcessing’, the
data-processing-stop-time parameter shall be present and shall contain the time at
which processing of the data, identified by data-unit-id-last-OK, successfully completed.

4.6.4.2.2.8 production-status

4.6.4.2.2.8.1 For all notifications except ‘production status change’, the production-
status parameter shall be present and shall contain the value of production-status
at the time of the event notification (see annex B).

4.6.4.2.2.8.2 If the notified event is ‘production status change’, the production-
status parameter shall be absent.

NOTE – The ‘production status change’ notification reports the post event production-
status value by means of the event-value parameter (see 3.11.2.2.4.3).

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-58 February 2021

4.6.4.2.3 event-name Extension

The value of the event-name shall be one of the following:

a) one of the values specified for the common NOTIFY operation in 3.11.2.2.3.2;

b) ‘data processing completed’ (event-name)—processing of the data unit identified
in the parameter data-unit-id-last-OK completed successfully;

1) the event-name of this event shall contain the procedure name of the procedure
instance triggering the event;

2) unless otherwise specified by the service using this procedure or by a derived
procedure, the associated event-value shall be ‘empty’;

c) ‘data processing configuration change’ (event-name)—at least one of the
dynamically modifiable configuration parameters defined in 4.6.5 has been changed;

NOTE – The input-queue-size parameter defined in 4.6.5 is the only
dynamically modifiable parameter of the Data Processing procedure.

1) the event-name of this event shall contain the procedure name of the procedure
instance in which the event occurs;

2) the notification of the data processing configuration change event shall report the
input-queue-size value by means of the event-value parameter:

i) the first part of the path specifying the type to be used is ‘NotifyInvocation’:
‘eventValue’: ‘EventValue’: ‘qualifiedValues’: ‘SequenceOfQualifiedValue’:
‘SEQUENCE OF QualifiedValue’, where this sequence has the length 1;

ii) if the qualifier of the to-be-reported value is not ‘valid’, then the second part
of the path is one of the following: (a) ‘QualifiedValue’: ‘unavailable’:
‘NULL’; (b) ‘QualifiedValue’: ‘undefined’: ‘NULL’; or (c) ‘QualifiedValue’:
‘error’: ‘NULL’;

iii) if the qualifier of the to-be-reported value is ‘valid’, then the second part of
the path is ‘QualifiedValue’: ‘valid’: ‘TypeAndValue’: ‘Embedded’:
‘EMBEDDED PDV’, where the Object Identifier and type of the input-
queue-size parameter are pDPinputQueueSize and
PDPinputQueueSizeType (see table 4-26).

NOTE – All relevant types are defined in F3.3 and F3.16.

4.6.4.2.4 The Published Identifier, that is, the Event Identifier, for the event-name of the
‘data processing complete’ event is specified in F3.16 as
pDPdataProcessingCompleted.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-59 February 2021

4.6.4.2.5 The Published Identifier, that is, the Event Identifier, for the event-name of the
‘data processing configuration change’ event is specified in F3.16 as
pDPconfigurationChange.

4.6.5 CONFIGURATION PARAMETERS

The Data Processing procedure configuration parameter that needs to be configured in the
context of the procedure shall be as defined in table 4-26.

NOTE – For the configuration parameter, the table identifies the engineering unit, a cross
reference to the use of the parameter in the specification of the procedure,
whether the parameter may be read and/or dynamically modified, and the
Parameter Identifier and type to be used in reporting the value of the parameter.

Table 4-26: Data Processing Procedure Configuration Parameters

Parameters Cross-
Reference Readable Dynamically

modifiable

Configuration
Parameter Identifier and

Type (F3.16)
input-queue-
size (in number
of PROCESS-
DATA invocations
the queue will
store)

4.6.3.2.3 Yes Yes pDPinputQueueSize
PDPinputQueueSizeType

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-60 February 2021

4.6.6 PROCEDURE STATE TABLE

Table 4-27: Data Processing Procedure State Table

No. Incoming Event State 1
(‘inactive’)

State 2
(‘active’)

1 (StartInvocation) IF
 “positive result”
THEN
 (+StartReturn)
 2
ELSE
 (-StartReturn)
ENDIF

{procedure to association abort ‘protocol
error’}
 1

2 (StopInvocation) {procedure to association
abort ‘protocol error’}

IF
 “positive result”
THEN
 {initiate stop}
 1
ELSE
 (-StopReturn)
ENDIF

3 (ProcessDataInvocation) {procedure to association
abort ‘protocol error’}

‘queue data unit’

4 ‘data unit ready’ Not applicable ‘process data unit’
5 ‘data unit processing completed’ [ignore] IF

 “report”
THEN
 ‘notify ‘data processing completed’ /
 ‘empty’’
ENDIF

6 ‘production status change to
‘interrupted’’

[ignore] ‘discard data units in processing’
‘notify ‘production status change’ /
‘interrupted’’

7 ‘production status change to ‘halted’’ [ignore] ‘discard data units in processing’
‘notify ‘production status change’ / ‘halted’’

8 ‘production status change to
‘operational’’

[ignore] ‘notify ‘production status change’ /
‘operational’’

9 ‘production status change to
‘configured’’

[ignore] ‘notify ‘production status change’ /
‘configured’’

10 ‘production configuration change’ [ignore] ‘notify ‘production configuration change’ /
’empty’’

11 ‘data processing configuration change’ [ignore] ‘notify ‘data processing configuration
change’ / ‘procedure configuration
parameter values’’ (see 4.6.4.2.3 c) 2))

12 ‘invalid PDU’ ‘xxx’ {procedure to association
abort ‘xxx’}

{procedure to association abort ‘xxx’}
 1

13 ‘terminate procedure’ ‘terminate itself’ ‘terminate itself’

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-61 February 2021

Table 4-28: Procedure State Table Incoming Event Description References

Event Reference
‘data unit processing completed’ 4.6.3.4
‘data unit ready’ 4.6.3.3.1, a PROCESS-DATA invocation is available at the

head of the Input Queue, the production engine is ready to
process the enclosed data unit, and production-status is
‘operational’

‘terminate procedure’ 4.2.3, internal event from the Association Control procedure to
all other procedures of the service instance in response to a
protocol abort, a PEER-ABORT, or an UNBIND

‘production status change to
‘xxx’’

B2.2.4

‘production configuration
change’

3.11.2.2.3.2 b)

‘data processing configuration
change’

4.6.4.2.3 c)

‘invalid PDU ‘xxx’’ 3.2.3.6, 4.2.2.4. ‘xxx’ is one of the diagnostic values
specified in 4.2.2.5

Table 4-29: Procedure State Table Predicate Descriptions

Predicate Evaluates to TRUE if
“positive result” No reason for sending a negative return has been detected; that

is, for the START invocation, none of the conditions in 3.7.2.3.1
or 4.6.3.1 a) (see NOTE below) applies, and for the STOP
invocation, none of the conditions in 3.3.2.7.1 applies.

“report” The process-completion-report parameter value in the
associated (ProcessDataInvocation) is ‘produce report’.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-62 February 2021

Table 4-30: Procedure State Table Simple Action References

Name References
‘queue data unit’ 4.6.3.2.1, 4.6.3.2.4
‘process data unit’ 4.6.3.3
‘complete data processing’ 4.6.3.6.2 b)
‘discard data units in processing’ 4.6.3.3.6
‘notify ‘xxx’ / ‘yyy’’ 4.6.3.5.1.1, 4.6.3.5.2, 4.6.3.5.3, 4.6.4.2.3 a), 4.6.4.2.3 b),

4.6.4.2.3 c), (NotifyInvocation) with event-name set to ‘xxx’
and event-value set to ‘yyy’. In case a notification does
not use an event-value, ‘yyy’ shall be set to ‘empty’

‘procedure to association abort ‘xxx’’ 4.2.2.3, 4.2.2.5, raise ‘procedure to association abort ‘xxx’’
event with diagnostic set to ‘xxx’ to the Association
Control procedure

‘clear the input queue’ 4.6.3.6.2 a), 4.6.3.8.1 b), remove and discard all
PROCESS-DATA invocations from the Input Queue

‘terminate itself’ 4.6.3.7

Table 4-31: Procedure State Table Compound Action Definitions

Name Actions Performed
{initiate stop} ‘clear the input queue’

‘complete data processing’
(+StopReturn)

{procedure to association abort ‘xxx’} ‘clear the input queue’
‘discard data units in processing’
‘procedure to association abort ‘xxx’’

4.6.7 REQUIREMENTS FOR PRODUCTION PROCESSING IN SUPPORT OF
THE DATA PROCESSING PROCEDURE

4.6.7.1 General

Because the Data Processing procedure can be used in a CSTS to process almost any kind of
data, the nature of the production processing that supports such a CSTS is highly dependent
on the nature of the data itself and the kind of processing that is to be performed.

While the essential functions performed by production processing are specific to the nature
of the individual CSTS, the Data Processing procedure levies certain data management and
data accounting requirements on all production processes, regardless of the nature of the data
processing being performed. Specifically, production processing must (a) carry the
identification of each data unit being processed, (b) discard in-process data units at the
request of the Data Processing procedure, and (c) report back to the Data Processing
procedure upon the completion of processing of each data unit.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-63 February 2021

4.6.7.2 Data unit identification

Production processing shall tag each data unit being processed with the data-unit-id of
the source PROCESS-DATA invocation, the procedure-name of the source Data
Processing procedure instance, and the service-instance-identifier of the source
CSTS instance.

NOTE – The identification information for each data unit is supplied by the Data
Processing procedure, as defined in 4.6.3.3.2.

4.6.7.3 Discarding of data units

Upon receipt of a 'discard data units' request from an instance of the Data Processing procedure
executing on a CSTS instance (see 4.6.3.3.6), production processing shall discard all data units
tagged with the service-instance-identifier specified in that request.

NOTES

1 The extent into the production processing to which the discarding of data units applies
is dependent on the specific nature of the CSTS and the ability of production processing
to identify each data unit and extract it. For example, if the data processing associated
with a given CSTS type at some stage transforms data units from multiple CSTS
instances into a product from which the contributions of individual data units cannot be
removed, then the discarding of data units must be limited to a processing step before
the generation of that product. Each CSTS should specify the extent into production
processing that discarding of data units is meaningful.

2 As described in 4.6.3.3.6, Note 1, nominally a CSTS will use only a single instance of
the Data Processing procedure. It is possible for a CSTS to use multiple instances of
the Data Processing procedure concurrently, but the behavior and the interactions
among those multiple instances is undefined in this Recommended Standard and must
be addressed by the CSTS specification. However, if the nature of the CSTS is such
that discarding of data units on the basis of the source Data Processing procedure
instance is appropriate to the service, the procedure-name component of the data
unit tag can be used to further identify the data units to be discarded.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-64 February 2021

4.6.7.4 Reporting completion of data processing

Production processing shall notify the source Data Processing procedure instance upon
completion of processing of each data unit submitted by that procedure instance, using the
data-unit-id of that data unit.

NOTES

1 As described in 4.6.3.4, the Data Processing procedure uses the data unit processing
completed information to confirm processing completion to the CSTS user.

2 The meaning of completion of processing of a data unit is specific to each CSTS type.
For example, for a given service it could be defined as the estimated time for the
beginning of radiation of the data unit. Each CSTS specification should specify how
data unit processing completion is defined in the context of that service and specify
the basis upon which completion is determined (e.g., some combination of measured
and estimated times).

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-65 February 2021

4.7 BUFFERED DATA PROCESSING

4.7.1 VERSION NUMBER

The version number of this procedure is 2.

4.7.2 DISCUSSION

4.7.2.1 Purpose

The purpose of the Buffered Data Processing procedure is to support transfer of large volumes
of data at high data rates from the service user to the service provider, for processing by the
service provider for which the maximum latency of data units may have to be limited. For this
purpose, the procedure allows a service to select one of the following transfer modes:

a) complete transfer mode, in which data are transmitted to the service provider
completely based on the flow control capabilities of the underlying data
communications service, and any latency that might be implied is accepted;

b) timely transfer mode, in which the service provider ensures that data units will not be
queued longer than a configurable latency limit and will discard the oldest
unprocessed data units if the capacity of the configurable Input Queue is exceeded.

The Buffered Data Processing procedure is abstract and cannot be implemented directly
because the specification is incomplete. To be implementable, derived procedures must
provide the missing specifications. The missing information is explicitly identified in the
applicable subsection(s) of this section.

4.7.2.2 Concept

The Buffered Data Processing procedure extends the Data Processing procedure (see 4.6)
and in particular provides specifications for the handling of Input Queue overflow conditions
that are left unspecified by the Data Processing procedure. The specification of this behavior
makes the Buffered Data Processing procedure implementable.

In order to support transfer of large data volumes at high data rates, the service user blocks
PROCESS-DATA invocations into a data unit called forward buffer. The forward buffer is
used exclusively for the purpose of transferring the PROCESS-DATA invocations from the
service user to the service provider. When the service provider receives a forward buffer, it
extracts the PROCESS-DATA invocations and places them on the Input Queue in the order
they have been inserted into the forward buffer by the service user. The maximum size of the
forward buffer is expressed as the number of PROCESS-DATA invocations that may be
stored in the buffer. It is a configuration parameter that is specified by the service using the
procedure or by a derived procedure.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-66 February 2021

The service user may also send individual PROCESS-DATA invocations that, as specified
for the parent procedure, are not enclosed in a forward buffer. The service provider will
handle such unbuffered PROCESS-DATA invocations in the same manner as a forward
buffer enclosing a single PROCESS-DATA invocation.

The Buffered Data Processing procedure defines two modes for the transfer of PROCESS-
DATA invocations from the service user to the service provider; these modes differ in the
method of handling or preventing overflow of the Input Queue:

a) In complete transfer mode, the service provider stops reading data from the
underlying data communications service when the available space on the Input Queue
drops below the maximum size of a forward buffer and resumes reading data when
there is sufficient room on the Input Queue to store all PROCESS-DATA invocations
that might be included in a maximum-sized forward buffer. This approach has the
effect that backpressure is built up on the transport layer, eventually preventing the
service user from transmitting further data. In effect, data will always be transferred
completely, accepting any delay that might be implied.

b) In timely transfer mode, when there is insufficient room on the Input Queue to store
all PROCESS-DATA invocations received within a forward buffer, the service
provider discards as many of the oldest PROCESS-DATA invocations, for which
processing has not started, as needed to store all PROCESS-DATA invocations
contained in the most recently received forward buffer. The objective of this approach
is to minimize the overall processing latency at the expense of dropping data with the
highest accumulated latency.

The service specification may fix the transfer mode to be used as part of the service
specification or may require the selection of the transfer mode by means of a service
management parameter.

When adding a PROCESS-DATA invocation to the Input Queue in timely transfer mode, the
service provider starts a latency timer for that PROCESS-DATA invocation and sets its
initial value to the value defined by the parameter processing-latency-limit. The
service provider discards the PROCESS-DATA invocation if the latency timer expires before
processing of the data unit enclosed in the PROCESS-DATA invocation starts.

When data are discarded in timely transfer mode because of queue overflow or because of
expiry of the processing latency timer (see 4.7.3.2.2.5), the service user is not notified. This
procedure assumes that detection and handling of data loss is performed by higher processing
layers. Where this assumption does not apply, notification of the service user will have to be
added by derived procedures.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-67 February 2021

4.7.2.3 Derivation

The Buffered Data Processing procedure extends the Data Processing procedure specified in 4.6
by the following features:

a) buffering of PROCESS-DATA invocations for the purpose of transfer from the
service user to the service provider;

b) support for timely and complete transfer modes for PROCESS-DATA invocations
including specifications how Input Queue overflow shall be prevented or handled;

c) support of a processing latency limit in timely transfer mode to constrain the time a
PROCESS-DATA invocation may be queued by the service provider before
processing of the enclosed data unit starts.

4.7.3 BEHAVIOR

4.7.3.1 Starting

The Buffered Data Processing procedure shall be started as defined in the parent procedure in 4.6.3.1.

4.7.3.2 Transfer and Queuing of PROCESS-DATA Invocations

NOTE – The following behavior is specified in addition to the specifications for the parent
procedure in 4.6.3.2.

4.7.3.2.1 Forward Buffer

4.7.3.2.1.1 PROCESS-DATA invocations may be grouped into a forward buffer, which
shall be handled by the service provider in its entirety.

NOTES

1 The forward buffer is used exclusively for the purpose of transferring the PROCESS-
DATA invocations from the service user to the service provider and is not an
operation invocation or response.

2 The service user may also send individual PROCESS-DATA invocations as specified
for the parent procedure in 4.6.3.2.

4.7.3.2.1.2 The maximum forward buffer size, expressed as the maximum number of
PROCESS-DATA invocations that can be stored in a forward buffer, shall be specified by
the service using this procedure or by a derived procedure, when setting of this parameter
may be delegated to Service Management.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-68 February 2021

NOTES

1 The number of PROCESS-DATA invocations included in a forward buffer is at the
discretion of the service user as long as it is less than or equal to the specified
maximum forward buffer size.

2 Even if, for a given service type, the forward buffer will not be used as only
individual PROCESS-DATA invocations will be sent, the size of the forward buffer
needs to be specified. In case only individual PROCESS-DATA invocations shall be
handled, the size will be limited to a single invocation.

4.7.3.2.1.3 The maximum forward buffer size shall be less than the configured Input Queue
size.

4.7.3.2.1.4 Upon receipt of a forward buffer containing more PROCESS-DATA
invocations than the specified maximum, this forward buffer shall be considered an invalid
PDU as per 3.2.3.6 f). The procedure shall issue the 'procedure to association abort' event
(refer to 4.2.2.3) setting the diagnostic value to 'forward buffer too large'.

4.7.3.2.1.5 When receiving a forward buffer, the service provider shall extract the
PROCESS-DATA invocations and place them on the Input Queue in the same order as they
have been inserted into the forward buffer by the service user.

4.7.3.2.1.6 When receiving an individual unbuffered PROCESS-DATA invocation as
specified in the parent procedure (see 4.6), the service provider shall handle it in the same
way as a forward buffer containing a single PROCESS-DATA invocation.

4.7.3.2.2 Data Transfer Modes

4.7.3.2.2.1 The service provider shall support the following transfer modes for the
reception of forward buffers:

a) complete transfer mode;

b) timely transfer mode.

NOTES

1 The complete transfer mode ensures that all data transmitted by the service user are
received, queued, and processed by the service provider, accepting any delay that
might be implied.

2 In timely transfer mode, the service provider will discard PROCESS-DATA
invocations that are queued longer than given by the value of the processing-
latency-limit parameter (see 4.7.2.2). In addition, the service provider will
discard PROCESS-DATA invocations with the highest accumulated latency when the
Input Queue overflows.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-69 February 2021

4.7.3.2.2.2 The transfer mode to be applied shall be defined by the service using the
procedure or by a derived procedure, or it may be delegated to Service Management.

4.7.3.2.2.3 In complete transfer mode, the service provider shall stop reading data from the
data communications service when the available space on the Input Queue drops below the
maximum forward buffer size and shall resume reading data from the data communications
service when the available space on the Input Queue enables accommodating at least the number
of PROCESS-DATA invocations that can be included in a maximum-sized forward buffer.

NOTES

1 When reading from the data communications service is suspended, backpressure will
build up that may eventually prevent the service user from sending further
PROCESS-DATA invocations.

2 In this situation, the service user will not be able to terminate the procedure
nominally by invocation of the STOP operation until all transmitted data have been
read and queued by the service provider. The only way to terminate the procedure
earlier is by invocation of PEER-ABORT.

3 This specification assumes that a service will only use a single instance of the
Buffered Data Processing procedure if that is operated in complete transfer mode. If
more than one instance is used then all instances of the Buffered Data Processing
procedure as well as any other procedures communicating via the same connection
may be blocked if one of the instances stops reading data from the communications
service.

4 Most of the points addressed in the notes above will apply regardless of the specifics
of the underlying communications technology, as long as such technology has the
characteristics as specified in 1.3.1. The behavior, as described in the notes above,
applies fully in case the underlying communication is as specified in reference [2].

4.7.3.2.2.4 In timely transfer mode, when the available space on the Input Queue does not
allow storing all PROCESS-DATA invocations extracted from a forward buffer, the service
provider shall discard as many of the oldest PROCESS-DATA invocations for which
processing has not started as needed to queue all PROCESS-DATA invocations received.

NOTE – The service user is not notified that PROCESS-DATA invocations have been
discarded.

4.7.3.2.2.5 The parameter processing-latency-limit shall specify the maximum
time that a PROCESS-DATA invocation may be queued in timely transfer mode before
processing of the enclosed data unit has to start.

4.7.3.2.2.6 A value of zero for the processing-latency-limit parameter shall
specify that the processing latency shall not be controlled by the service provider; that is, the
‘processing latency timer expired’ event (see table 4-35) shall not occur.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-70 February 2021

NOTE – As in complete data transfer mode, the service provider does not control the
processing latency; that is, except as provided in 4.7.3.2.2.5, data units will be
discarded only in case the Input Queue overflows. The processing-
latency-limit parameter is set to zero as long as complete transfer mode
applies.

4.7.3.2.2.7 The value of the parameter processing-latency-limit shall be
specified by the service using the procedure or by a derived procedure, or it may be
delegated to Service Management.

4.7.3.2.2.8 When placing a PROCESS-DATA invocation on the Input Queue, the service
provider shall start a specific latency timer for that PROCESS-DATA invocation if the value
of the processing-latency-limit parameter is not zero.

4.7.3.2.2.9 The initial value of latency timer shall be set to the value specified by the
parameter processing-latency-limit.

4.7.3.2.2.10 When processing of the data unit enclosed in the PROCESS-DATA invocation
starts or the PROCESS-DATA invocation is discarded, the associated latency timer shall be
canceled.

4.7.3.2.2.11 If the latency timer expires before processing of the enclosed data unit starts,
the PROCESS-DATA invocation shall be discarded.

NOTE – The service user is not notified that a PROCESS-DATA invocation has been
discarded because of expiry of the latency timer.

4.7.3.3 Processing of Data Units

Data units shall be processed as specified for the parent procedure in 4.6.3.3.

4.7.3.4 Positive Feedback

Positive feedback shall be provided as specified for the parent procedure in 4.6.3.4.

4.7.3.5 Notifications

Events shall be notified as specified for the parent procedure in 4.6.3.5 with the exception
specified in 4.7.4.2.

4.7.3.6 Stopping

The procedure shall be stopped as specified for the parent procedure in 4.6.3.6.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-71 February 2021

4.7.3.7 Terminating

The procedure shall terminate as specified for the parent procedure in 4.6.3.7.

4.7.3.8 Aborting

The procedure shall handle the need to request the Association Control procedure to abort the
association as specified for the parent procedure in 4.6.3.8.

4.7.4 REQUIRED OPERATIONS

Table 4-32: Buffered Data Processing Procedure Required Operations

Operations Source Extended Refined
Procedure

Blocking/Non-Blocking
START Data Processing N N Blocking

STOP Data Processing N N Blocking

PROCESS-DATA Data Processing N N Non-Blocking

NOTIFY Data Processing Y N Non-Blocking

4.7.4.1 PROCESS-DATA (Unconfirmed)

4.7.4.1.1 The Buffered Data Processing procedure uses the unconfirmed variant of the
PROCESS-DATA operation.

4.7.4.1.2 The data syntax definition is left to the service using this procedure.

NOTE – Subsection 3.10.2.2.4 stipulates that a procedure using the PROCESS-DATA
operation refines or extends the data parameter of that operation. The Buffered
Data Processing procedure does not do that.

4.7.4.2 NOTIFY (Unconfirmed)

4.7.4.2.1 General

The Buffered Data Processing procedure shall inherit the notifications defined for the parent
procedure in 4.6.4.2.3.

Notification shall be performed as defined in the parent procedure in 4.6.3.5.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-72 February 2021

4.7.4.2.2 event-value

4.7.4.2.2.1 Except for the ‘data processing configuration change’ (event-name) event
the event-value specifications of the parent procedure shall apply.

4.7.4.2.2.2 For the ‘buffered data processing configuration change’ (event-name) event,
the event-value shall report the values of the dynamically modifiable parameters
maximum-forward-buffer-size, input-queue-size, and processing-
latency-limit, defined in 4.7.5. The first part of the path specifying the type to be used
is ‘NotifyInvocation’: ‘eventValue’: ‘EventValue’: ‘qualifiedValues’:
‘SequenceOfQualifiedValue’: ‘SEQUENCE OF QualifiedValue’, where this sequence has
the length 3. The first element of this sequence shall report the maximum-forward-
buffer-size, the second the input-queue-size, and the third the processing-
latency-limit parameter value. For each of the three parameters, the following shall
apply: If the qualifier of the to-be-reported value is not ‘valid’, then the second part of the
path is one of the following: (a) ‘QualifiedValue’: ‘unavailable’: ‘NULL’; (b)
‘QualifiedValue’: ‘undefined’: ‘NULL’; or (c) ‘QualifiedValue’: ‘error’: ‘NULL’. If the
qualifier of the to-be-reported value is ‘valid’, then the second part of the path is
‘QualifiedValue’: ‘valid’: ‘TypeAndValue’: ‘Embedded’: ‘EMBEDDED PDV’, where the
OID and type of the maximum-forward-buffer-size parameter are
pBDPmaxForwardBufferSize and pBDPmaxForwardBufferSizeType, the OID
and type of the input-queue-size parameter are pDPinputQueueSize and
PDPinputQueueSizeType, and the OID and type of the processing-latency-
limit parameter are pBDPprocessingLatencyLimit and
PBDPprocessingLatencyType (see table 4-33). All relevant types are defined in F3.3
and F3.16.

4.7.5 CONFIGURATION PARAMETERS

4.7.5.1 The Buffered Data Processing procedure configuration parameters that need to be
configured in the context of the procedure shall be as defined in table 4-33.

NOTE – For each configuration parameter, the table identifies the engineering unit (if
applicable), a cross reference to the use of the parameter in the specification of
the procedure, whether the parameter may be read and/or dynamically modified,
and the Parameter Identifier and type to be used in reporting the value of the
parameter.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-73 February 2021

Table 4-33: Buffered Data Processing Procedure Configuration Parameters

Parameters Cross-
Reference

Read-
able

Dynami-
cally

modifiable

Configuration Parameter
Identifier and Type (F3.16)

data-
transfer-
mode

4.7.3.2.2 Yes No
pBDPdataTransferMode
PBDPdataTransferModeType

maximum-
forward-
buffer-size
(in number of
PROCESS-
DATA
invocations the
buffer will
store)

4.7.3.2.1.2 Yes Yes
pBDPmaxForwardBufferSize
pBDPmaxForwardBufferSizeType

input-
queue-size
(in number of
PROCESS-
DATA
invocations the
queue will
store)

4.6.3.2.3 Yes Yes

pDPinputQueueSize
PDPinputQueueSizeType
(inherited from the parent Data
Processing procedure)

processing-
latency-
limit (in
milliseconds)

4.7.3.2.2.5 Yes Yes
pBDPprocessingLatencyLimit
PBDPprocessingLatencyLimitType

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-74 February 2021

4.7.6 PROCEDURE STATE TABLE

Table 4-34: Buffered Data Processing Procedure State Table

No. Incoming Event State 1
(‘inactive’)

State 2
(‘active’)

1 (StartInvocation) IF
 “positive result”
THEN
 set “reading suspended” to FALSE
 (+StartReturn)
 2
ELSE
 (-StartReturn)
ENDIF

{procedure to association abort ‘protocol
error’}
 1

2 (StopInvocation) {procedure to association abort
‘protocol error’}

IF
 “positive result”
THEN
 {initiate stop}
 1
ELSE
 (-StopReturn)
ENDIF

3 (ProcessDataInvocation)1 {procedure to association abort
‘protocol error’}

IF
 “timely mode”
THEN
 IF
 “queue overflow”
 THEN
 ‘discard oldest data units’
 ENDIF
ENDIF
‘queue data unit’
IF
 “complete mode”
THEN
 IF
 “queue full”
 THEN
 ‘suspend reading’
 set “reading suspended” to TRUE
 ENDIF
ENDIF

1 In terms of Service Provider behavior, handling of an incoming PROCESS-DATA invocation and handling of an

incoming forward buffer containing only one PROCESS-DATA invocation are identical.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-75 February 2021

No. Incoming Event State 1
(‘inactive’)

State 2
(‘active’)

4 (ForwardBuffer) {procedure to association abort
‘protocol error’}

FOR_EACH (ProcessDataInvocation)
 IN (ForwardBuffer)
 IF
 “timely mode”
 THEN
 IF
 “queue overflow”
 THEN
 ‘discard oldest data units’
 ENDIF
 ENDIF
 ‘queue data unit’
 IF
 “complete mode”
 THEN
 IF
 “queue full”
 THEN
 ‘suspend reading’
 set “reading suspended” to TRUE
 ENDIF
 ENDIF
ENDFOR_EACH

5 ‘data unit ready’ Not applicable ‘process data unit’

6 ‘data unit processing completed’ [Ignore] IF
 “report”
THEN
 ‘notify ‘data processing completed’ /
 ’empty’’
ENDIF
IF
 “reading suspended”
THEN
 IF
 (NOT “queue full”)
 THEN
 ‘resume reading’
 set “reading suspended” to FALSE
 ENDIF
ENDIF

7 ‘processing latency timer
expired’

Not applicable ‘discard data unit’

8 ‘production status change to
‘interrupted’’

[Ignore] ‘discard data units in processing’
‘notify ‘production status change’ /
‘interrupted’’

9 ‘production status change to
‘halted’’

[Ignore] ‘discard data units in processing’
‘notify ‘production status change’ /
‘halted’’

10 ‘production status change to
‘operational’’

[Ignore] ‘notify ‘production status change’ /
‘operational’’

11 ‘production status change to
‘configured’’

[Ignore] ‘notify ‘production status change’ /
‘configured’’

12 ‘production configuration
change’

[Ignore] ‘notify ‘production configuration change’ /
’empty’’

13 ‘data processing configuration
change’

[Ignore] ‘notify ‘data processing configuration
change’ / ‘procedure configuration
parameter values’’ (see 4.7.4.2.2.2)

14 ‘invalid PDU ‘xxx’’ {procedure to association abort ‘xxx’} {procedure to association abort ‘xxx’}
 1

15 ‘terminate procedure’ ‘terminate itself’ ‘terminate itself’

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-76 February 2021

Table 4-35: Procedure State Table Incoming Event Description References

Event Reference
‘data unit processing completed’ 4.6.3.4
‘data unit ready’ 4.6.3.3.1

‘processing latency timer expired’ 4.7.3.2.2.11

‘terminate procedure’ 4.2.3

‘production status change to ‘xxx’’ B2.2.4

‘production configuration change’ 3.11.2.2.3.2 b)

‘data processing configuration
change’

4.7.4.2.2.2

‘invalid PDU ‘xxx’’ 3.2.3.6, 4.2.2.4, 4.7.3.2.1.4. ‘xxx’ is one of the diagnostic
values specified in 4.2.2.5 or 4.7.3.2.1.4

Table 4-36: Procedure State Table Predicate Descriptions

Predicate Evaluates to TRUE if
“queue overflow” There is not sufficient space on the Input Queue to store the PROCESS-

DATA invocations received (see 4.7.3.2.2.4); the transfer mode is ‘timely’.

“queue full” There is not enough space on the Input Queue to store all PROCESS-DATA
invocations that might be contained in a maximum-sized forward buffer (see
4.7.3.2.2.3); the transfer mode is ‘complete’.

“complete mode” Complete transfer mode is in effect (see 4.7.3.2.2).

“timely mode” Timely transfer mode is in effect (see 4.7.3.2.2).

“positive result” No reason for sending a negative return has been detected; that is, for the
START invocation, none of the conditions in 3.7.2.3.1 or 4.6.3.1 a) applies,
and for the STOP invocation, none of the conditions in 3.3.2.7.1 applies.

“report” The process-completion-report parameter value in the associated
(ProcessDataInvocation) is ‘produce report’ (see 4.6.4.1.4).

Table 4-37: Procedure State Table Boolean Flags

Predicate Flag Set to TRUE if
“reading suspended” In complete transfer mode, reading data from the data

communications service has been suspended.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-77 February 2021

Table 4-38: Procedure State Table Simple Action References

Name References
‘queue data unit’ 4.7.3.2

‘suspend reading’ 4.7.3.2

‘resume reading’ 4.7.3.2

‘discard oldest data units’ 4.7.3.2

‘discard data unit’ 4.7.3.2.2.11

‘discard data units in processing’ 4.6.3.3.6

‘clear the Input Queue’ 4.6.3.6.2 a)

‘complete data processing’ 4.6.3.6.2 b)

‘notify ‘xxx’ / ‘yyy’’ 4.6.3.5.1.1, 4.6.3.5.2, 4.6.3.5.3, 4.6.4.2.3 a), 4.6.4.2.3 b),
4.6.4.2.3 c), 4.7.4.2.2, (NotifyInvocation) with event-name
set to ‘xxx’ and event-value set to ‘yyy’. In case a
notification does not use an event-value, ‘yyy’ shall be
set to ‘empty’

‘procedure to association abort
‘xxx’’

4.2.2.3, 4.2.2.5, raise ‘procedure to association abort ‘xxx’’
event with diagnostic set to ‘xxx’ to the Association
Control procedure, where the diagnostic value may be
one of those specified in 3.6.2.2.1.2 or the value specified in
4.7.3.2.1.4

‘terminate itself’ 4.6.3.7

Table 4-39: Procedure State Table Compound Action Definitions

Name Actions Performed
{initiate stop} ‘clear the input queue’

‘complete data processing’
(+StopReturn)

{procedure to association abort
‘xxx’}

‘clear the input queue’
‘discard data units in processing’
‘procedure to association abort ‘xxx’’

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-78 February 2021

4.8 SEQUENCE-CONTROLLED DATA PROCESSING

4.8.1 VERSION NUMBER

The version number of this procedure is 2.

4.8.2 DISCUSSION

4.8.2.1 Purpose

The purpose of the Sequence-Controlled Data Processing procedure is

a) to provide strict sequential transfer and processing of data units in the sequence
defined by the service user; and

b) to enable the service user to resynchronize transfer and processing of data units in
case a problem is detected during processing of a data unit.

The procedure is intended for use in Cross Support Transfer Services that involve sequence-
controlled data transfer and processing and that need confirmation of data transfer and status
reports on the ongoing production process.

The Sequence-Controlled Data Processing procedure is abstract and cannot be implemented
directly because the specification is incomplete. To be implementable, derived procedures
must provide the missing specifications. The missing information is explicitly identified in
the applicable subsection(s) of this section.

4.8.2.2 Concept

The Sequence-Controlled Data Processing procedure extends the Data Processing procedure
(see 4.6). Before data units can be transferred for processing, the service user invokes a
START operation, which contains the data-unit-id value the service provider shall
accept in the first PROCESS-DATA invocation after the successful completion of the
START operation.

When the service provider receives the first PROCESS-DATA invocation, it verifies that the
contained data-unit-id value is equal to the one defined in the START operation;
otherwise, the service provider rejects the PROCESS-DATA invocation.

NOTE – The Sequence-Controlled Data Processing procedure uses the confirmed variant
of the PROCESS-DATA operation.

For all following PROCESS-DATA invocations, the service provider verifies that the
data-unit-id is one greater than the one received in the previous accepted PROCESS-
DATA invocation; if that is not the case, the PROCESS-DATA invocation is rejected.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-79 February 2021

Before a PROCESS-DATA invocation can finally be accepted, the service provider checks

a) whether production-status is not ‘halted’;

b) whether the included earliest and latest production times are consistent;

c) whether the Input Queue is not full; and

d) whether the service provider is in the ‘active.processing’ state (see table 4-44).

If any of these checks fails, the PROCESS-DATA invocation is rejected.

NOTE – Further details on production status changes are defined in annex B.

After acceptance of the PROCESS-DATA invocation, the service provider sends a positive
return to the service user and buffers the PROCESS-DATA invocation on the Input Queue. The
service provider starts processing not earlier than the earliest-data-process-start-
time and not later than the latest-data-process-start-time included in the
PROCESS-DATA invocation. In case no earliest-data-process-start-time is
given for the data unit, processing starts as soon as possible, regardless if the latest-data-
process-start-time is given or not; otherwise, the service provider starts data unit
processing within the time frame defined by the earliest and latest processing times.

NOTE – Regardless of the service user having defined earliest-data-process-
start-time and latest-data-process-start-time, the service
provider processes the data units in the sequence defined by the data-unit-
id in the PROCESS-DATA operation, which in this procedure serves as a
sequence counter. This means that the PROCESS-DATA operations are always
processed in the order they have been received and buffered.

Reporting of the completion of processing steps is performed as defined by the parent Data
Processing procedure in 4.6.3.4.

If processing of a data unit fails, the service provider enters a ‘locked’ state and notifies the
service user of the problem. While in the ‘locked’ state, the service provider does not
perform any data processing; nor does it accept any new PROCESS-DATA invocations from
the service user. To recover from the ‘locked’ state, the service user may issue a STOP
invocation; the service provider then clears the Input Queue, exits the ‘locked’ state, and
terminates the procedure. After the completion of the STOP operation, the service user issues
a START invocation (as soon as production-status becomes ‘operational’ again—see
NOTE) with the next data-unit-id the service provider accepts.

NOTE – Because the STOP operation puts the procedure in the ‘inactive’ state, the service
user in this case must use other means to obtain the production-status
value if such means are provided by the service.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-80 February 2021

As an alternative to invoking a STOP operation followed by a START operation, the service
user may invoke an EXECUTE-DIRECTIVE operation with the directive-
identifier ‘reset’ to clear the Input Queue and exit the ‘locked’ state, where the
directive-qualifier parameter defines the next data-unit-id the service
provider accepts.

NOTE – The ‘locked’ state is a substate of the ‘active’ state that does not affect the state
of the service instance.

4.8.2.3 Derivation

The Sequence-Controlled Data Processing procedure extends the parent Data Processing
procedure specified in 4.6 by the following features:

a) use of the confirmed variant of the PROCESS-DATA operation;

b) start of processing of the data units not earlier than an earliest and not later than a
latest processing start time defined by the service user;

c) transition to a ‘locked’ state and notification of the service user in case processing of
a data unit fails;

NOTE – In such a case, the service provider is blocked and does not accept any
further PROCESS-DATA invocations, as the strict sequential processing
cannot be guaranteed anymore.

d) resynchronization of data unit processing by the service user in case of a problem
detected during data unit processing.

4.8.3 BEHAVIOR

4.8.3.1 Starting

4.8.3.1.1 The behavior of the Sequence-Controlled Data Processing procedure regarding
starting shall be as specified for the Data Processing procedure in 4.6.3.1, with the additional
requirements specified in the following subsection.

NOTE – The service user will invoke the START operation with the first-data-
unit-id parameter to request that the service provider prepare to receive data
units for processing, and to specify the permissible data-unit-id value in the
first PROCESS-DATA invocation that will be sent.

4.8.3.1.2 The service provider shall record the first-data-unit-id parameter value
that shall be accepted with the first PROCESS-DATA invocation.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-81 February 2021

4.8.3.1.3 If production-status is ‘interrupted’ at the time the START invocation is
received, the service provider shall issue a negative return with the diagnostic value set
to ‘unable to comply’.

4.8.3.2 Transfer and Queuing of PROCESS-DATA invocations

4.8.3.2.1 The behavior of the Sequence-Controlled Data Processing procedure regarding
the transfer and queuing of PROCESS-DATA invocations shall be as specified for the parent
Data Processing procedure in 4.6.3.2, with the additional requirements specified in this
subsection.

4.8.3.2.2 The service provider shall accept the first PROCESS-DATA invocation after a
successful START operation only if the value of the data-unit-id parameter is that of
the first-data-unit-id parameter of the previously accepted START invocation.

4.8.3.2.3 The service provider shall accept a subsequent PROCESS-DATA invocation only
if the data-unit-id parameter value of the previous accepted PROCESS-DATA
invocation is one less than the current value.

4.8.3.2.4 If the data-unit-id value has reached the maximum value given by the range
of the data-unit-id parameter and has to be incremented by one, the parameter value
shall wrap around to zero.

4.8.3.2.5 If the service provider detects an unexpected value of the data-unit-id
parameter of the PROCESS-DATA operation, it shall issue a negative PROCESS-DATA
return with the diagnostic value set to ‘out of sequence’.

4.8.3.2.6 If the Input Queue used for buffering of incoming PROCESS-DATA operations is
full at the time the service provider receives a PROCESS-DATA invocation, the service
provider shall issue a negative PROCESS-DATA return with the diagnostic value set to
‘unable to store’.

4.8.3.2.7 If production-status is ‘halted’ at the time of reception of a PROCESS-
DATA invocation, the service provider shall issue a negative PROCESS-DATA return with
the diagnostic value set to ‘unable to process’.

4.8.3.2.8 If production-status is not ‘halted’ at the time of reception of a
PROCESS-DATA operation invocation but the service provider is in the ‘locked’ substate,
the service provider shall issue a negative PROCESS-DATA return with the diagnostic
value set to ‘service instance locked’.

4.8.3.2.9 If the service provider does not accept a PROCESS-DATA invocation, it shall not
queue the data unit by appending it to the Input Queue, but discard it.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-82 February 2021

4.8.3.3 Processing of Data Units

4.8.3.3.1 The behavior of the Sequence-Controlled Data Processing procedure regarding
the processing of data units while in State 2.1 (‘active.processing’) shall be as specified for
the Data Processing procedure in 4.6.3.3, with the additional requirements specified in the
following subsection.

NOTE – While the Sequence-Controlled Data Processing procedure is in State 2.2
(‘processing.locked’), no data units are processed. The conditions for entering
and leaving the ‘processing.locked’ state are specified in 4.8.3.7. Table 4-44
specifies all behavioral differences of the procedure when in state 2.1 and 2.2,
respectively.

4.8.3.3.2 Data Processing Start Time

4.8.3.3.2.1 The service provider shall start processing of the data unit not earlier than the
time defined by the earliest-data-process-start-time parameter and not later
than the time defined by the latest-data-process-start-time parameter, both
defined in the PROCESS-DATA operation.

4.8.3.3.2.2 If the value of the earliest-data-process-start-time parameter is
‘undefined’ in the PROCESS-DATA invocation, the service provider shall process the data
unit included as soon as possible, as long as production-status is ‘operational’.

NOTE – This implies that, while production-status is ‘configured’ or ‘interrupted’,
the service provider waits until production-status changes to
‘operational’.

4.8.3.3.2.3 If the value of the latest-data-process-start-time parameter is
‘undefined’ in the PROCESS-DATA operation, then the service provider shall process the
included data unit as long as production-status is ‘operational’.

4.8.3.3.2.4 If the latest-data-process-start-time parameter in the PROCESS-
DATA operation is not ‘undefined’, the service provider shall defer processing of the data
unit if the current production-status is ‘interrupted’. Processing shall be deferred
until production-status changes to ‘operational’ before latest-data-process-
start-time expires.

4.8.3.3.2.5 If processing of a data unit has not begun at or before latest-data-
process-start-time, a NOTIFY operation shall be issued with the Event Identifier
‘expired’ (event-name) and the data unit shall be discarded.

4.8.3.3.2.6 If production-status changes to ‘interrupted’, and there is a data unit at
the head of the queue, and its latest-data-process-start-time is ‘undefined’,
and no other data unit is being processed, the service provider shall not start processing but
wait until production-status changes back to ‘operational’.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-83 February 2021

4.8.3.4 Positive Feedback

Status reporting shall be performed as defined in the parent procedure in 4.6.3.4.

4.8.3.5 Notification of Production Status Changes

Production status changes shall be reported as defined in the parent procedure in 4.6.3.5.1.

4.8.3.6 Notification of Production Configuration Changes

Production configuration changes shall be reported as defined in the parent procedure in
4.6.3.5.2.

4.8.3.7 Locking

4.8.3.7.1 The state ‘active.locked’ shall be a substate of the ‘active’ state.

4.8.3.7.2 The service provider shall enter the ‘active.locked’ substate when

a) the data unit has already expired at the time when processing shall start; or

b) production-status changes to ‘interrupted’, and a data unit is currently being
processed; or

c) production-status changes to ‘halted’.

4.8.3.7.3 In the ‘active.locked’ substate, the service provider shall reject PROCESS-DATA
invocations from the service user with the diagnostic value set to ‘service instance
locked’; it shall not perform any processing of data units in its Input Queue.

4.8.3.7.4 The Sequence-Controlled Data Processing procedure shall return to State 2.1
(‘active.processing’) after having accepted a STOP and a subsequent START invocation or
an EXECUTE-DIRECTIVE invocation with the directive-identifier equal to
‘reset’.

NOTE – Both options clear the Input Queue.

4.8.3.8 Resetting

When receiving an EXECUTE-DIRECTIVE invocation with the directive-
identifier equal to ‘reset’, the service provider shall

a) send an EXECUTE-DIRECTIVE positive acknowledgement to the service user;

b) clear the Input Queue;

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-84 February 2021

c) wait for processing to complete and provide feedback as described in 4.6.3.4, if any
data unit is currently being processed;

d) if in ‘active.locked’ substate, wait for production-status to become
‘operational’ and then transition to the ‘active.processing’ substate;

e) set the first-data-unit-id to the value requested in the EXECUTE-
DIRECTIVE invocation; and

f) send an EXECUTE-DIRECTIVE positive return to the service user.

4.8.3.9 Stopping

The procedure shall be stopped as specified for the parent procedure in 4.6.3.6.

4.8.3.10 Terminating

The procedure shall terminate as specified for the parent procedure in 4.6.3.7. In addition,
any pending acknowledgements shall be deleted.

4.8.3.11 Aborting

The procedure shall handle the need to request the Association Control procedure to abort the
association as specified for the parent procedure in 4.6.3.8.

4.8.4 REQUIRED OPERATIONS

Table 4-40: Sequence-Controlled Data Processing Procedure Required Operations

Operations Source Extended Refined
Procedure

Blocking/Non-Blocking
START Data Processing Y N Blocking
STOP Common N N Blocking
PROCESS-DATA Data Processing Y N Non-Blocking
NOTIFY Data Processing Y N Non-Blocking
EXECUTE-
DIRECTIVE Common Y N Blocking

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-85 February 2021

4.8.4.1 START (Confirmed)

4.8.4.1.1 General

The Sequence-Controlled Data Processing procedure shall extend the START operation
defined in 3.7 through the addition of one parameter to the invocation.

4.8.4.1.2 Operation Parameters Definitions

The Sequence-Controlled Data Processing procedure shall extend the START operation
defined in 3.7 through the addition of the first-data-unit-id parameter.

Table 4-41: START Extension Parameters

Extension Parameters Invocation Return

first-data-unit-id M

4.8.4.1.3 Extension Parameter Syntax

4.8.4.1.3.1 The type SequContrDataProcStartInvocExt, as defined in F3.10,
shall specify the syntax of the extension parameter of the START invocation.

4.8.4.1.3.2 first-data-unit-id

The first-data-unit-id parameter shall contain the value of the data-unit-id
parameter that will be present in the first PROCESS-DATA invocation after the preceding
successful START operation.

NOTE – Following a data processing failure, processing of a data unit for which
processing started before the failure condition occurred may still continue. Also,
reports on the progress of this processing may still be generated. The service user
(when restarting the data transfer) shall therefore choose the value of the
first-data-unit-id parameter such that all data units can still be
unambiguously identified.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-86 February 2021

4.8.4.2 PROCESS-DATA (Confirmed)

4.8.4.2.1 General

NOTE – Subsection 3.10.2.2.4 stipulates that a procedure using the PROCESS-DATA
operation refines or extends the data parameter of that operation. The
Sequence-Controlled Data Processing procedure does not do that. The data
syntax definition is left to the service using this procedure.

4.8.4.2.1.1 The Sequence-Controlled Data Processing procedure shall extend the PROCESS-
DATA invocation defined in 3.10 through the addition of the earliest-data-process-
start-time and latest-data-process-start-time parameters, and additional
diagnostic values.

4.8.4.2.1.2 The Sequence-Controlled Data Processing procedure shall use the confirmed
variant of the PROCESS-DATA operation and as a consequence the confirmed variant of the
Standard Operation Header.

4.8.4.2.1.3 The Sequence-Controlled Data Processing procedure shall extend the PROCESS-
DATA return defined in 3.10 through the addition of the data-unit-id parameter.

Table 4-42: PROCESS-DATA Extension Parameters

Parameters Invocation Return
Standard Operation Header (confirmed) M M
earliest-data-process-start-time M
latest-data-process-start-time M
data-unit-id M

4.8.4.2.2 Standard Confirmed Operation Header

This operation shall use the Standard Confirmed Operation Header (see 3.3).

4.8.4.2.3 Extension Parameters Syntax

4.8.4.2.3.1 The type SequContrDataProcProcDataInvocExt, as defined in F3.10,
shall specify the syntax of the extension parameters of the invocation of the PROCESS-
DATA operation.

4.8.4.2.3.2 The type SequContrDataProcProcDataPosReturnExt, as defined in
F3.10, shall define the syntax of the extended positive return of the PROCESS-DATA operation.

4.8.4.2.3.3 The type SequContrDataProcProcDataNegReturnExt, as defined in
F3.10, shall define the syntax of the extended negative return of the PROCESS-DATA operation.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-87 February 2021

4.8.4.2.4 data-unit-id

4.8.4.2.4.1 The service provider shall set the data-unit-id in the PROCESS-DATA
return to the value expected in the next PROCESS-DATA invocation.

4.8.4.2.4.2 If the invocation is accepted, the data-unit-id in the PROCESS-DATA
return contains the value of the data-unit-id in the PROCESS-DATA invocation
incremented by one.

4.8.4.2.4.3 If the invocation is rejected, the data-unit-id in the PROCESS-DATA
return shall contain the value expected by the service provider:

a) in case of the first PROCESS-DATA operation following a successful START
operation, it is the value specified in first-data-unit-id parameter of the
START invocation;

b) otherwise, the value is one greater than the value of the data-unit-id of the last
accepted PROCESS-DATA invocation.

4.8.4.2.4.4 If the data-unit-id value has reached the maximum value given by the
range of the data-unit-id parameter and has to be incremented by one, the parameter
value shall wrap around to zero.

4.8.4.2.5 earliest-data-processing-start-time

4.8.4.2.5.1 The earliest-data-process-start-time parameter shall either be
‘undefined’ or shall contain the earliest time at which processing of the data unit may begin.

4.8.4.2.5.2 If the earliest-data-process-start-time parameter is ‘undefined’,
the service provider shall begin processing as soon as

a) production-status becomes or is ‘operational’; and

b) no other data unit that was transferred earlier than this data unit has not yet completed
processing.

4.8.4.2.6 latest-data-processing-start-time

4.8.4.2.6.1 The latest-data-process-start-time parameter shall either be
‘undefined’ or shall contain the latest time at which processing of the data unit shall begin.

4.8.4.2.6.2 If the latest-data-process-start-time is equal to the earliest-
data-process-start-time, the processing of the data shall start at this time.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-88 February 2021

4.8.4.2.7 diagnostic Parameter Extension Value Definitions and Syntax

4.8.4.2.7.1 If a negative PROCESS-DATA return is sent, the diagnostic parameter
shall use one of the diagnostic values specified in 3.3.2.7.1 or one of the following
values:

a) ‘unable to process’—the service provider cannot process data because the service
provider has been taken out of service for an indefinite period by management action;
that is, production-status is ‘halted’;

b) ‘service instance locked’—production-status is not ‘halted’, but the service
provider is in the ‘active.locked’ substate and therefore cannot process the data;

NOTE – The service provider has reported the fault condition causing the
‘active.locked’ substate to the service user via a NOTIFY operation. (For
possible reasons, see 4.8.3.7.2).

c) ‘out of sequence’—the value of the data-unit-id parameter is not equal to the
value expected by the service provider; the expected value is one of the following:

1) in the case of the first PROCESS-DATA operation following a successful
START, the value of the first-data-unit-id parameter of that START
invocation;

2) otherwise, the value of the data-unit-id parameter of the last positive
PROCESS-DATA return;

d) ‘inconsistent time range’—the time specified in the earliest-data-process-
start-time parameter is later than the time specified in the latest-data-
process-start-time parameter;

e) ‘invalid time’—the production time window is invalid for one of the following
reasons:

1) the period from earliest-data-process-start-time to latest-
data-process-start-time does not overlap with the range of times for
which service production is scheduled;

2) the period from earliest-data-process-start-time to latest-
data-process-start-time does not overlap with the service instance
provision period;

NOTE – The production may be scheduled to terminate earlier than the service
instance provision period ends. An ESLT may do so to have the
production engine available for support of a different mission as soon as
possible, but permitting the service users of the previous production
period some extra time to retrieve, for example, a status report reflecting
the final accounting information.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-89 February 2021

f) ‘late data’—latest-data-process-start-time is earlier than the time the
PROCESS -DATA operation is received by the service provider;

g) ‘data error’—the service provider has performed error checks as provided in the
service agreement and has determined that this data is in error; for example, the data
exceeds the maximum size allowed for this service instance;

h) ‘unable to store’—the service provider has not enough buffer space available to store
this PROCESS-DATA invocation.

4.8.4.2.7.2 The type SequContrDataProcProcDataDiagnosticExt, as defined in
F3.10, shall specify the syntax of the diagnostic parameter of the PROCESS-DATA
return, extended as listed in 4.8.4.2.7.1.

4.8.4.3 NOTIFY (Unconfirmed)

4.8.4.3.1 General

The Sequence-Controlled Data Processing procedure shall inherit the notifications defined
for the parent procedure in 4.6.4.2.3, but shall extend the NOTIFY operation by introducing
additional values for the data-processing-status parameter and by adding two
permissible Event Identifier values to the event-name parameter, as specified in the
following subsections.

4.8.4.3.2 data-processing-status Parameter Extension

4.8.4.3.2.1 The type DataProcNotifyInvocExt, as defined in F3.8, is inherited from
the parent procedure, but is extended for the Sequence-Controlled Data Processing procedure
by the type SequContrDataProcStatus as defined in F3.10.

4.8.4.3.2.2 By means of this extension, the data-processing-status parameter can
also have one of the following values:

a) ‘expired’—at the time processing of the data unit identified by the data-unit-
last-processed parameter was attempted, the latest-data-process-
start-time was already in the past;

b) ‘processing not started’—processing of the data unit identified by the data-unit-
last-processed parameter was attempted, but could not be started because the
production-status was ‘interrupted’.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-90 February 2021

4.8.4.3.3 event-name Extension

4.8.4.3.3.1 The value of the event-name shall be one of the following:

a) one of the events specified by the Data Processing procedure NOTIFY operation in
4.6.4.2.3;

b) ‘expired’ (event-name)—at the time when processing is being started, the latest-
data-process-start-time is already in the past; the event-name of this
event shall contain the procedure name of the procedure instance triggering the event;

NOTE – When the ‘expired’ event occurs, the procedure enters the ‘active.locked’
substate (see 4.8.3.7.2), which in turn means that the ‘locked’ event is to
be reported. Therefore, whenever the ‘expired’ event occurs, two
notifications will be sent by this procedure.

c) ‘locked’ (event-name)—at the time when processing is supposed to be started or
while a data unit is being processed, one of the conditions specified in 4.8.3.7.2
occurred: the event-name of this event shall contain the procedure name of the
procedure instance triggering the event.

4.8.4.3.3.2 The Published Identifiers for the values (event-name) ‘expired’ and ‘locked’
are specified in F3.16 as pSCDPexpired and pSCPDlocked, respectively.

4.8.4.3.4 event-value

4.8.4.3.4.1 For the ‘data processing configuration change’ (event-name) event, the event-
value shall report the value of the dynamically modifiable parameter input-queue-size
defined in 4.8.5. The first part of the path specifying the type to be used is ‘NotifyInvocation’:
‘eventValue’: ‘EventValue’: ‘qualifiedValues’: ‘SequenceOfQualifiedValue’: ‘SEQUENCE OF
QualifiedValue’, where this sequence has the length 1. If the qualifier of the to-be-reported value is not
‘valid’, then the second part of the path is one of the following: (a) ‘QualifiedValue’: ‘unavailable’:
‘NULL’; (b) ‘QualifiedValue’: ‘undefined’: ‘NULL’; or (c) ‘QualifiedValue’: ‘error’: ‘NULL’. If the
qualifier of the to-be-reported value is ‘valid’, then the second part of the path is ‘QualifiedValue’:
‘valid’: ‘TypeAndValue’: ‘Embedded’: ‘EMBEDDED PDV’, where the OID and type of the input-
queue-size parameter are pDPinputQueueSize and PDPinputQueueSizeType,
respectively (see table 4-43). All relevant types are defined in F3.3 and F3.16.

4.8.4.3.4.2 For the ‘expired’ (event-name) event, the event-value shall be ‘empty’
unless otherwise specified by the service using this procedure, or by a derived procedure.

4.8.4.3.4.3 For the ‘locked’ (event-name) event, the event-value shall be ‘empty’
unless otherwise specified by the service using this procedure, or by a derived procedure.

4.8.4.3.4.4 Except for the ‘data processing configuration change’, the ‘expired’, and the ‘locked’
(event-name) events, the event-value specifications of the parent procedure apply.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-91 February 2021

4.8.4.4 EXECUTE-DIRECTIVE (Acknowledged)

4.8.4.4.1 General

The Sequence-Controlled Data Processing procedure shall extend the EXECUTE-
DIRECTIVE operation defined in 3.13 through the definition of one value possible for the
directive-identifier parameter.

4.8.4.4.2 directive-identifier Extension

The Sequence-Controlled Data Processing procedure shall add ‘reset’ to the set of Directive
Identifiers possible for the directive-identifier parameter (see the
pSCDPdirectivesId branch of the OID tree). This Directive Identifier requests that the service
provider clears the Input Queue.

4.8.4.4.3 directive-qualifier Value

4.8.4.4.3.1 For the ‘reset’ (directive-identifier) directive, the directive-qualifier
shall identify the next-data-unit-id parameter value; that is, the data-unit-id
parameter value the service provider shall accept in the next PROCESS-DATA invocation.

4.8.4.4.3.2 The directive-qualifier parameter is defined by
‘ExecuteDirectiveInvocation’: ‘directiveQualifier’: ‘localProcDirQualifier’:
‘DirectiveQualifierValues’: ‘TypeAndValue’: ‘Embedded’: ‘EMBEDDED PDV’. The OID
of this parameter shall be pSCDPresetDirectiveDirQual, and the directive-qualifier
value type shall be PSCDPresetDirectiveDirQualType (see F3.16).

4.8.5 CONFIGURATION PARAMETERS

4.8.5.1 The Sequence-Controlled Data Processing procedure configuration parameters that
need to be configured in the context of the procedure shall be as defined in table 4-43.

NOTE – For each configuration parameter, the table identifies the engineering unit (if
applicable), a cross reference to the use of the parameter in the specification of the
procedure, whether the parameter may be read and/or dynamically modified, and
the Parameter Identifier and type to be used in reporting the value of the parameter.

Table 4-43: Sequence-Controlled Data Processing Procedure Configuration Parameters

Parameters Cross-
Reference Readable Dynamically

modifiable
Configuration Parameter

Identifier and Type (F3.16)
input-queue-
size (in number of
PROCESS-DATA
invocations the
queue will store)

4.6.3.2.3 Yes Yes

pDPinputQueueSize
PDPinputQueueSizeType
(inherited from the parent Data
Processing procedure)

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-92 February 2021

4.8.6 PROCEDURE STATE TABLE

Table 4-44: Sequence-Controlled Data Processing Procedure State Table

No. Incoming Event State 1
(‘inactive’)

State 2.1
(‘active.processing’)

State 2.2
(‘active.locked’)

1 (StartInvocation) IF
 “positive
result”
THEN
 (+StartReturn)
 2.1
ELSE
 (-StartReturn)
ENDIF

{procedure to association abort
‘protocol error’}
 1

{procedure to association abort
‘protocol error’}
 1

2 (StopInvocation) {procedure to
association
abort ‘protocol
error’}

IF
 “positive result”
THEN
 {initiate stop}
 1
ELSE
 (-StopReturn)
ENDIF

IF
 “positive result”
THEN
 {initiate stop}
 1
ELSE
 (-StopReturn)
ENDIF

3 (ProcessDataInvocation) {procedure to
association
abort ‘protocol
error’}

IF
 “positive result”
THEN
 ‘queue data unit’
 (+ProcessDataReturn)
ELSE
 (-ProcessDataReturn)
ENDIF

 (-ProcessDataReturn)

4 ‘data unit ready’ Not applicable IF
 “production status = ‘interrupted’”
THEN
 2.2
ELSE
 ‘process data unit’
ENDIF

Not applicable

5 ‘data unit processing
completed’

[ignore] IF
 “report”
THEN
 ‘notify ‘data processing
 completed’ / ‘empty’’
ENDIF

Not applicable

6 ‘expired’ Not applicable ‘notify ‘expired’ / ’empty’’
‘discard data unit’
 2.2

Not applicable

7 ‘production status
change to ‘interrupted’’

[ignore] ‘notify ‘production status change’ /
‘interrupted’’
IF
 “processing data unit”
THEN
 ‘discard data units in processing’
 2.2
ENDIF

[ignore]

8 ‘production status
change to ‘halted’’

[ignore] ‘discard data units in processing’
‘notify ‘production status change’ /
‘halted’’
 2.2

‘notify ‘production status change’ /
‘halted’’

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-93 February 2021

No. Incoming Event State 1
(‘inactive’)

State 2.1
(‘active.processing’)

State 2.2
(‘active.locked’)

9 ‘production status
change to ‘operational’’

[ignore] Not applicable ‘notify ‘production status change’ /
‘operational’’

10 ‘production status
change to ‘configured’’

[ignore] Not applicable ‘notify ‘production status change’ /
‘configured’’

11 ‘production configuration
change’

[ignore] ‘notify ‘production configuration
change’ / ‘empty’’

‘notify ‘production configuration
change’ / ’empty’’

12 ‘data processing
configuration change’

[ignore] ‘notify ‘data processing configuration
change’ / ‘procedure configuration
parameter values’’ (see 4.8.4.3.4.1)

‘notify ‘data processing
configuration change’ / ‘procedure
configuration parameter values’’
(see 4.8.4.3.4.1)

13 ‘invalid PDU ‘xxx’’ {procedure to
association
abort ‘protocol
error’}

{procedure to association abort
‘xxx’}
 1

{procedure to association abort
‘xxx’}
 1

14 ‘terminate procedure’ ‘terminate itself’ ‘terminate itself’ ‘terminate itself’

15 (ExecuteDirectiveInvoca
tion)

{procedure to
association
abort ‘protocol
error’}

If
 directive-identifier = ‘reset’
THEN
 (+ExecuteDirectiveAcknowledge)
 {reset}
 (+ExecuteDirectiveReturn)
ELSE
 (-ExecuteDirectiveAcknowledge)
 with diagnostic ‘unknown
 directive’
ENDIF

If
 directive-identifier = ‘reset’
THEN
(+ExecuteDirectiveAcknowledge)
 {reset}
 (+ExecuteDirectiveReturn)
 2.1
ELSE
 (-ExecuteDirectiveAcknowledge)
 with diagnostic ‘unknown
 directive’
ENDIF

Table 4-45: Procedure State Table Incoming Event Description References

Event Reference
‘expired’ 4.8.3.3.2.5, 4.8.4.3.2, a data unit is available at the head of the Input

Queue, but its latest-data-process-start-time has
expired.

‘data unit processing
completed’

4.6.3.4

‘data unit ready’ 4.8.3.3.2, a data unit is available at the head of the Input Queue,
and production-status is ‘operational’; neither earliest-
data-process-start-time nor latest-data-process-
start-time is specified, or the current time is between
earliest-data-process-start-time and latest-data-
process-start-time, and production-status is
‘operational’.

‘terminate procedure’ 4.2.3

‘production status change
to ‘xxx’’

B2.2.4

‘production configuration
change’

3.11.2.2.3.2 b)

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-94 February 2021

Event Reference
‘data processing
configuration change’

4.8.4.3.4.1

‘invalid PDU ‘xxx’’ 3.2.3.6, 4.2.2.4. ‘xxx’ is one of the diagnostic values specified in
4.2.2.5

Table 4-46: Procedure State Table Predicate Descriptions

Predicate Evaluates to TRUE if
“positive result” No reason for sending a negative return has been detected; that is,

for the START invocation, none of the conditions in 3.7.2.3.1 or
4.6.3.1 a) applies, for the STOP invocation none of the conditions in
3.3.2.7.1 applies, and for the PROCESS-DATA invocation none of
the conditions in 4.8.4.2.7.1 applies.

“report” The process-completion-report parameter value in the
associated (ProcessDataInvocation) is ‘produce report’.

“processing data unit” A data unit has been read from the top of the Input Queue and
processing of this data unit has started but not completed.

“production status =
‘interrupted’”

The current value of production-status is ‘interrupted’.

Table 4-47: Procedure State Table Simple Action References

Name References
‘queue data unit’ 4.8.3.2
‘process data unit’ 4.8.3.3
‘complete data processing’ 4.6.3.6.2 b)
‘clear the Input Queue’ 4.6.3.6.2 a), 4.8.3.8 b)
‘notify ‘xxx’ / ‘yyy’’ 4.6.3.5.1.1, 4.6.3.5.2, 4.6.3.5.3, 4.6.4.2.3 a), 4.6.4.2.3 b), 4.6.4.2.3

c), 4.8.4.3.3.1 (NotifyInvocation) with event-name set to ‘xxx’ and
event-value set to ‘yyy’; in case a notification does not use an
event-value, ‘yyy’ shall be set to ‘empty’

‘discard data unit’ 4.8.3.3.2.5
‘discard data units in
processing’

4.6.3.3.6

‘procedure to association
abort ‘xxx’’

4.2.2.3, 4.2.2.5, raise ‘procedure to association abort ‘xxx’’ event with
diagnostic set to ‘xxx’ to the Association Control procedure

‘terminate itself’ 4.6.3.7
‘set the data-unit-id
parameter’

4.8.3.8 e), set the data-unit-id parameter as per the
directive-qualifier parameter value of the received ‘reset’
directive

‘wait’ <event> 4.8.3.8 c), 4.8.3.8 d), wait until the event <event> occurs

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-95 February 2021

Table 4-48: Procedure State Table Compound Action Definitions

Name Actions Performed
{initiate stop} ‘clear the input queue’

‘complete data processing’
(+StopReturn)

{procedure to association
abort ‘xxx’}

‘clear the input queue’
‘discard data units in processing’
‘procedure to association abort ‘xxx’’

{reset} ‘clear the Input Queue’
‘wait ‘data unit processing completed’’
‘wait ‘production status operational’’
‘set the data-unit-id parameter’

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-96 February 2021

4.9 INFORMATION QUERY

4.9.1 VERSION NUMBER

The version number of this procedure is 1.

4.9.2 DISCUSSION

4.9.2.1 Purpose

The Information Query procedure enables the service user to request from the service
provider the provision of a standard set of parameters reflecting either the configuration of
the transfer service instance using this procedure or the status of other service provider
parameters.

4.9.2.2 Concept

The Information Query procedure provides the CSTS user with the capability to request the
current values of registered parameters. A CSTS that incorporates the Information Query
procedure is hereinafter referred to as a queriable CSTS.

The set of queriable parameters for a CSTS is identified by the Parameter Names of
individual queriable parameters and/or parameter list names, in which such a list contains a
set of Parameter Labels for that service. The list-of-parameters includes one of the
following: (a) ‘empty’, signifying the default list is selected; (b) a parameter list name of a
list of Parameter Labels; (c) a Functional Resource Type; (d) a Functional Resource Name;
(e) a procedure type; (f) a procedure name; or (g) Parameter Names or Parameter Labels of
individual queriable parameters.

Each parameter list name consists of a string that represents multiple individual Parameter
Labels. One special case of a parameter list may also exist for each queriable CSTS: the
default list. The default list is named as any other list that may exist for the CSTS, but it is
automatically applied when the list-of-parameters parameter is set to ‘empty’. The
definition of the default list (if any) is controlled by the specification of the CSTS using the
Information Query procedure or by a derived procedure, or it may be delegated to Service
Management.

For a given queriable CSTS, the set of Parameter Labels included in the default list (if any)
and/or the set of Parameter Labels represented by named label lists and the set of individual
queriable Parameter Labels or Parameter Names are defined by the specification of that
CSTS or a derived Information Query procedure. A CSTS using this procedure will have to:

a) select the Functional Resource Types and associated gettable parameters from the
Published Identifiers used for cross support or Agencies functionalities (see D6), and
select the procedure types and the associated gettable parameters from the Published
Identifiers used for the framework or services branches;

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-97 February 2021

b) define the grouping of Parameter Labels into lists and allocate a list name for each
list; and

c) identify which of the defined lists will be the default list, if any.

While a queriable CSTS instance is bound, the service user invokes the GET operation of the
Information Query procedure to query parameter values in one of the following ways:

a) by leaving the selection of parameters unspecified, thereby selecting the default list of
Parameter Labels;

b) by specifying a list name, where the list represents a predefined set of Parameter
Labels;

c) by specifying a Functional Resource Type, thereby identifying all parameters
belonging to the instances of that Functional Resource Type that are directly
associated with the transfer service executing the Information Query procedure;

d) by specifying a Functional Resource Name (Functional Resource Type and Instance
Number), thereby identifying all parameters belonging to that Functional Resource
Instance;

e) by specifying a procedure type thereby selecting all configuration parameters of all
active instances of the given procedure type that are associated with the service
instance that executes the Information Query procedure;

f) by specifying a procedure name thereby selecting the configuration parameters of that
procedure instance; or

g) by specifying Parameter Names or Parameter Labels of the individual queriable
parameters.

The service provider sends to the service user the requested qualified parameter values using
the GET operation return. As specified in annex C2.4, the qualified value for each parameter
value indicates whether the value is valid, unavailable, undefined, or in error.

4.9.3 BEHAVIOR

4.9.3.1 Getting Parameters

The service provider shall respond to GET invocations sent by the service user (see 3.12).

4.9.3.2 Terminating

Upon receipt of a ‘terminate procedure’ event from the Association Control procedure, the
procedure shall terminate by releasing all pending GET operations without answering them.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-98 February 2021

4.9.4 REQUIRED OPERATIONS

Table 4-49: Information Query Procedure Required Operations

Operations Source Extended Refined
Procedure

Blocking/Non-Blocking
GET Common N N Non-Blocking

4.9.5 CONFIGURATION PARAMETERS

The Information Query procedure configuration parameters that need to be configured in the
context of the procedure shall be as defined in table 4-50.

NOTE – For each configuration parameter, the table provides a cross reference to the use
of the parameter in the specification of the procedure, identifies whether the
parameter may be read, and also identifies the Parameter Identifier and type to be
used in reporting the value of the parameter. None of the configuration
parameters of this procedure can be dynamically changed while the service
instance executing the procedure is bound.

Table 4-50: Information Query Procedure Configuration Parameters

Parameters
Cross-

Reference Readable
Configuration Parameter

Identifier and Type (F3.16)
default list of
parameters

4.9.2.2 No N/A

named label
lists

3.12.1.2 b) Yes pIQnamedLabelLists
PIQnamedLabelListsType

NOTE – The default list of parameters is shown in table 4-50 as not readable. This is
because one cannot directly query the name of the default list. However, one can
retrieve the full set of list names, and for each list it is stated whether this list is
specified to be the default list.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-99 February 2021

4.9.6 PROCEDURE STATE TABLE

Table 4-51: Information Query Procedure State Table

No. Incoming Event Stateless

1 (GetInvocation) IF
 “positive result”
THEN
 (+GetReturn)
ELSE
 (-GetReturn)
ENDIF

2 ‘terminate procedure’ ‘terminate itself’

Table 4-52: Procedure State Table Incoming Event Description References

Event Reference
‘terminate procedure’ 4.2.3, internal event from the Association Control procedure to all other

procedures of the service instance in response to a protocol abort, a
PEER-ABORT, or an UNBIND

Table 4-53: Procedure State Table Predicate Descriptions

Predicate Evaluates to TRUE if
“positive result” No reason for sending a negative return has been detected; that is, for

the GET invocation, none of the conditions in 3.12.2.4.1 applies.

Table 4-54: Procedure State Table Simple Action References

Name References
‘terminate itself’ 4.9.3.2

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-100 February 2021

4.10 CYCLIC REPORT

4.10.1 VERSION NUMBER

The version number of this procedure is 1.

4.10.2 DISCUSSION

4.10.2.1 Purpose of the Procedure

The Cyclic Report procedure enables a service user to periodically receive parameter values
from a service provider.

4.10.2.2 Concept

The Cyclic Report procedure extends the Unbuffered Data Delivery procedure with the
following capabilities:

a) the procedure defines the structure of the data as a set of parameter values;

b) the selected parameter values are delivered periodically.

Each instance of a CSTS that incorporates the Cyclic Report procedure (hereinafter referred
to as a reporting CSTS) cyclically (periodically) reports on the current value of a set of
predefined and selected parameters.

The set of reportable parameters for a CSTS is identified by parameter list names of lists of
Parameter Labels for that service and/or the Parameter Names of individual reportable
parameters. The list-of-parameters parameter includes one of the following: (a)
‘empty’ (i.e., the list-of-parameters parameter is unspecified), (b) a parameter list
name where the list contains Parameter Labels, (c) a Functional Resource Type, (d) a
Functional Resource Name, (e) a procedure type, (f) a procedure name, or the Parameter
Names or Parameter Labels of individual reportable parameters.

Each parameter list name consists of a string that represents multiple individual Parameter
Labels. One special case of a parameter list may also exist for each reporting CSTS: the default
list. The default list is named as any other list that may exist for the given CSTS, but it is
automatically applied when the list-of-parameters parameter is set to ‘empty’. The
definition of the default list is controlled by the specification of the CSTS using the Cyclic
Report procedure or by a derived procedure or may be delegated to Service Management.

For a given reporting CSTS, the Parameter Labels included in the default list (if any), and/or
the Parameter Labels represented by named Parameter Label lists, the set of Parameter
Labels or the set of Parameter Names is defined by the specification of that CSTS or by a
derived procedure. A CSTS using this procedure or a derived procedure will have to:

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-101 February 2021

a) select the Functional Resource Types and associated reportable parameters from the
Published Identifiers used for cross support or Agencies functionalities (see D6) and
select the procedure types and the associated reportable parameters from the Published
Identifiers used for the framework or services branches;

b) define the grouping of Parameter Labels into lists and allocate a list name for each list; and

c) identify which of the defined lists will be the default list.

In starting the Cyclic Report procedure, the service user subscribes to the particular
parameters that are to be reported by that procedure in one of the following ways:

a) by leaving the list-of-parameters parameter unspecified (i.e., set to ‘empty’), thus
selecting the parameters represented by the default list of Parameter Labels to be reported;

b) by specifying a list name, which represents a predefined set of Parameter Labels;

c) by specifying a Functional Resource Type, thereby identifying all parameters
belonging to the instances of that Functional Resource Type that are directly
associated with the CSTS executing the Cyclic Report procedure;

d) by specifying a Functional Resource Name, thereby identifying all parameters
belonging to that Functional Resource Instance;

e) by specifying a procedure type, thus selecting the configuration parameters of all
active instances of that procedure type associated with the service instance executing
the Cyclic Report procedure;

f) by specifying a procedure name, thereby selecting the configuration parameters of
that procedure instance; or

g) by identifying the Parameter Names or Parameter Labels of the individual parameters
that are reportable by that service instance.

The service user requests periodic reporting by invoking the START operation and
specifying the following criteria:

a) the delivery cycle to be used for periodic delivery;

b) the default list of parameters to be delivered, the name of a list defining the parameters
to be delivered, a Functional Resource Type, a Functional Resource Name, a procedure
type, a procedure instance, or the set of individual parameters to be delivered.

The service provider delivers the qualified parameters the service user has subscribed to
using the TRANSFER-DATA operation until the service user invokes a STOP operation. A
qualified parameter consists of the Parameter Name, value, type, and qualifier of that
parameter (see annex C).

After stopping the procedure, the service user may optionally re-start the cyclic delivery of
parameter values, applying the same or a different selection of parameters.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-102 February 2021

4.10.3 BEHAVIOR

4.10.3.1 Starting

NOTE – The service user invokes the START operation (a) to subscribe to the set of
parameters that are to be cyclically reported either by selecting the default list (1)
by leaving the selection of parameters unspecified; or by selecting one of the
named Parameter Label lists; or (2) by using a Functional Resource Type, a
Functional Resource Name, a procedure type, or a procedure name; or (3) by
listing the parameters individually; and (b) to configure the cyclic timer by
setting the value of the delivery-cycle parameter.

4.10.3.1.1 Upon receipt of the START invocation, the service provider shall confirm that the
invocation is valid. A START invocation for the Cyclic Report procedure is valid if it meets
any one of the following conditions:

a) the list-of-parameters parameter is set to ‘empty’ signifying subscription to
the default list of Parameter Labels, provided a default list has been established;

b) the list-of-parameters parameter contains one parameter list name for a list
of Parameter Labels that is contained in the set of label lists that has been established
for the CSTS for use for use by the Cyclic Report procedure;

c) the list-of-parameters parameter contains one Functional Resource Type that
is associated with the service instance that executes the Cyclic Report procedure;

d) the list-of-parameters parameter contains the name of one Functional
Resource Instance that is associated with the service instance that executes the Cyclic
Report procedure;

e) the list-of-parameters parameter contains one procedure type that is
associated with the service instance that executes the Cyclic Report procedure;

f) the list-of-parameters parameter contains one procedure name of a
procedure instance that is associated with the service instance that executes the
Cyclic Report procedure;

g) (1) the list-of-parameters parameter contains one or more Functional
Resource Parameter Names or Functional Resource Parameter Labels, and (2) every
one of these names or labels is the name or label of a parameter of a Functional
Resource that is associated with the service instance that executes the Cyclic Report
procedure; or

h) (1) the list-of-parameters parameter contains one or more procedure
configuration Parameter Names or Parameter Labels, and (2) every one of these
names or labels is the name or label of a parameter of a configured procedure that is
associated with the service instance that executes the Cyclic Report procedure.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-103 February 2021

4.10.3.1.2 The service provider shall send a positive START return and perform the START
operation invoked by the service user except if

a) the production-status parameter value is ‘halted’, in which case the START
operation shall be rejected by sending a negative START return with the
diagnostic value set to ‘out of service’;

b) the delivery-cycle parameter is less than the limit set by the configuration
parameter PCRminimumAllowedDeliveryCycleType (see 4.10.5), in which
case the START operation shall be rejected by sending a negative START return with
the diagnostic value set to ‘out of range’;

c) none of the conditions specified in 4.10.3.1.1 is met, in which case the START
operation shall be rejected by sending a negative START return with the
diagnostic value set to the applicable value, as specified in 4.10.4.1.3.1; or

d) the procedure is in State 2 (‘active’), in which case the procedure shall request the
Association Control procedure to abort the association with setting the diagnostic
value to ‘protocol error’.

4.10.3.1.3 The service provider shall set the cyclic timer to the value of the delivery-
cycle parameter in the START invocation and start it.

4.10.3.2 Transferring Data

4.10.3.2.1 After a successful START operation, the service provider shall transfer the
qualified parameters cyclically by means of invoking the TRANSFER-DATA operation.

NOTE – The availability of a TRANSFER-DATA invocation for delivery to the
communications service constitutes the ‘data available’ event.

4.10.3.2.2 Qualified parameter delivery shall be governed by the cyclic timer. The cyclic
timer expiration constitutes the ‘cyclic timer expired’ event.

4.10.3.2.3 Upon expiration of the cyclic timer, the service provider shall send the up-to-date
qualified parameters selected by means of the START invocation parameter list-of-
parameters to the service user and restart the cyclic timer.

4.10.3.2.4 The service provider shall deliver the qualified parameters (Parameter Name, the
value, the type, and the qualifier of the parameters (see annex C) using the qualified-
parameters parameter. If list-of-parameters

a) is left empty, then

1) for each Functional Resource Parameter Label in the default list (see E), the service
provider shall deliver the qualified parameter (see annex C) for that label for each

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-104 February 2021

of the Functional Resource Instances of the given type that are directly associated
with the service instance that executes the Cyclic Report procedure; and

2) for each procedure configuration Parameter Label in the default list, the service
provider shall deliver the qualified parameter for that label for every configured
instance of the procedure that is directly associated with the service instance that
executes the Cyclic Report procedure;

b) contains the name of a list of Parameter Labels, then;

1) for each Functional Resource Parameter Label in the named list, the service
provider shall deliver the qualified parameter for that label for each instance of
the given Functional Resource Type that is directly associated with the service
instance that executes the Cyclic Report procedure; and

2) for each procedure configuration Parameter Label in the named list, the service
provider shall deliver the qualified parameter for that label for every configured
instance of the procedure that is directly associated with the service instance that
executes the Cyclic Report procedure;

c) contains a Functional Resource Type, the service provider shall deliver for each
Parameter Label associated with that Functional Resource Type the qualified
parameter for that label of each Functional Resource Instance of the given type that is
directly associated with the service instance that executes the Cyclic Report
procedure;

d) contains a Functional Resource Name, the service provider shall deliver the qualified
parameters for all the parameters of the named Functional Resource Instance;

e) contains a procedure type, then the service provider shall deliver the qualified
parameters for all configuration parameters of every configured instance of that
procedure type that is associated with the service instance executing the Cyclic
Report procedure;

f) contains a procedure name, then the service provider shall deliver the qualified
parameters for all configuration parameters for that procedure instance;

g) contains any Parameter Labels for Functional Resource parameters, the service
provider shall deliver the qualified parameter for that label for each instance of the
given Functional Resource Type that is associated with the service instance that
executes the Cyclic Report procedure;

h) contains any Parameter Labels for procedure configuration parameters, the service
provider shall deliver for each label the qualified parameters for every configured
instance of the procedure that is associated with the service instance that executes the
Cyclic Report procedure; or

i) contains one or more Parameter Names, the service provider shall deliver the
qualified parameter for each of the listed parameters.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-105 February 2021

4.10.3.3 Stopping

Upon reception of a STOP invocation, the service provider shall

a) stop the cyclic timer; and

b) stop transferring the qualified parameters.

4.10.3.4 Terminating

Upon receipt of a ‘terminate procedure’ event from the Association Control procedure, the
procedure shall terminate by

a) stopping transmitting TransferDataInvocation PDUs; and

b) releasing the resources.

4.10.4 REQUIRED OPERATIONS

Table 4-55: Cyclic Report Procedure Required Operations

Operations Source Extended Refined
Procedure

Blocking/Non-Blocking
START Unbuffered Data

Delivery
Y N Blocking

STOP Unbuffered Data
Delivery

N N Blocking

TRANSFER-
DATA

Unbuffered Data
Delivery

N Y Non-Blocking

4.10.4.1 START (Confirmed)

4.10.4.1.1 General

The Cyclic Report procedure shall extend the START operation defined by the Unbuffered
Data Delivery procedure (see 4.10.3.1) through the addition of two parameters to the
invocation and through the addition of one value for the diagnostic parameter of the
return.

4.10.4.1.2 Operation Parameters Definitions

NOTE – Table 4-56 shows the extension parameters of the START operation defined by
this procedure.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-106 February 2021

Table 4-56: START Extension Parameters

Extension Parameters Invocation Return

delivery-cycle M

list-of-parameters M

4.10.4.1.2.1 Extension Parameters Syntax

The type CyclicReportStartInvocExt, as defined in F3.12, shall specify the syntax
of the extension parameters of the START invocation.

4.10.4.1.2.2 delivery-cycle

The delivery-cycle parameter shall be present in the invocation and shall specify the
requested interval between subsequent TRANSFER-DATA invocations.

4.10.4.1.2.3 list-of-parameters

4.10.4.1.2.3.1 The list of Parameter Names/Parameter Labels or the names of the lists that
can be requested shall be defined by the service using this procedure or a procedure derived
from this procedure.

4.10.4.1.2.3.2 The list-of-parameters parameter shall contain one of the following:

a) ‘empty’ value (i.e., left unspecified);

b) the name of a list;

c) a Functional Resource Type;

d) a Functional Resource Name;

e) a procedure type;

f) a procedure name;

g) a list of individual Parameter Labels; or

h) a list of individual Parameter Names.

4.10.4.1.2.3.3 The Parameter Names and parameter list names shall comply with the
definition in annex E.

4.10.4.1.2.3.4 The parameters that may be contained in the list-of-parameters
parameter shall include (but not be limited to) the parameter that reports the production-
status of the service, as specified in B2.2.2 and B2.2.3.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-107 February 2021

4.10.4.1.3 diagnostic Parameter Extension Value Definitions and Syntax

4.10.4.1.3.1 If a negative START return is sent, the diagnostic parameter shall use one
of the diagnostic values specified by the START operation in the Unbuffered Data
Delivery procedure (see 4.5.4.1.3.1) or one of the following values:

a) ‘default not defined’—the default list (list-of-parameters set to ‘empty’) is
unknown to the service provider.

b) ‘unknown list name’—the list name contained in the list-of-parameters is unknown
to the service provider. The unknown list name shall be returned with the diagnostic.

c) ‘unknown Functional Resource Type’—the Functional Resource Type contained in
the list-of-parameters parameter is unknown to the service provider (see
4.10.4.1.2.3), or the Functional Resource Type is not associated with the service
instance that executes the Cyclic Report procedure. The unknown Functional
Resource Type shall be returned with the diagnostic.

d) ‘unknown Functional Resource Name’—while the Functional Resource Type is known,
the Functional Resource Name contained in the list-of-parameters parameter
is unknown to the service provider (see 4.10.4.1.2.3), or the Functional Resource Name
is not associated with the service instance that executes the Cyclic Report procedure.
The unknown Functional Resource Name shall be returned with the diagnostic.

e) ‘unknown procedure type’—the procedure type contained in the list-of-
parameters parameter is unknown to the service provider (see 4.10.4.1.2.3). The
unknown procedure type shall be returned with the diagnostic.

f) ‘unknown procedure name’—while the procedure type is known, the procedure name
contained in the list-of-parameters parameter is unknown to the service provider
(see 4.10.4.1.2.3). The unknown procedure name shall be returned with the diagnostic.

g) ‘unknown parameter identifier’—one or more Parameter Identifiers contained in the
list-of-parameters parameter are unknown to the service provider (see
4.10.4.1.2.3) for one of the following reasons:

1) the Functional Resource or procedure type specified as part of the Parameter
Label is not associated with the service instance executing the given Cyclic
Report procedure instance;

2) a parameter with the given Published Identifier does not exist for the specified
Functional Resource or procedure type or instance.

 The list of unknown Parameter Names or Parameter Labels shall be returned with the
diagnostic. For each unknown Parameter Identifier that is contained in a
Parameter Name in the list-of-parameters, the Parameter Name shall be
returned. For each unknown Parameter Identifier that is contained in a Parameter
Label in the list-of-parameters, the Parameter Label shall be returned.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-108 February 2021

h) ‘out of range’—the service user requested a delivery cycle that is shorter than the limit set by
the configuration parameter PCRminimumAllowedDeliveryCycleType (see 4.10.5).

4.10.4.1.3.2 The type CyclicReportStartDiagnosticExt, as defined in F3.12,
shall specify the syntax of the diagnostic parameter of the START return, extended as
listed in 4.10.4.1.3.1.

4.10.4.2 TRANSFER-DATA (Unconfirmed)

4.10.4.2.1 General

This procedure refines the TRANSFER-DATA operation defined in 4.4.3.2 defining the
syntax of one parameter of the invocation.

4.10.4.2.2 Operation Parameters Definitions

NOTE – The common parameters of the TRANSFER-DATA operation are defined in 3.9.2.
This procedure refines the data parameter of the TRANSFER-DATA operation.

4.10.4.2.2.1 data Parameter Syntax

The type CyclicReportTransferDataInvocDataRef defined in F3.12 shall specify
the syntax of the data parameter of the TRANSFER-DATA invocation using the
qualified-parameters definition.

NOTE – The data parameter syntax is structured as a sequence of qualified parameters,
each of which carries the name, the value, the type, and the qualifier of the
parameter (see annex C).

4.10.4.2.2.2 qualified-parameters

The qualified-parameters parameter shall carry the name, the value, the type, and
the qualifier of the parameters (see annex C).

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-109 February 2021

4.10.5 CONFIGURATION PARAMETERS

The Cyclic Report procedure configuration parameters that need to be configured in the
context of the procedure shall be as defined in table 4-57.

NOTE – For each configuration parameter, the table identifies the engineering unit (if
applicable), a cross reference to the use of the parameter in the specification of the
procedure, whether the parameter may be read, and the Parameter Identifier and
type to be used in reporting the value of the parameter. None of the configuration
parameters of this procedure can be dynamically changed while the service
instance executing the procedure is bound.

Table 4-57: Cyclic Report Procedure Configuration Parameters

Parameters
Cross-

Reference Readable
Configuration Parameter

Identifier and Type (F3.16)
named-label-
lists

4.10.3.1.1 b) Yes pCRnamedLabelLists
PCRnamedLabelListsType

minimum-
allowed-
delivery-cycle
(in milliseconds)

4.10.4.1.2.2 Yes pCRminimumAllowedDeliveryCycle
PCRminimumAllowedDeliveryCycleTy
pe

default list of
parameters

4.10.3.1.1 b) No N/A

NOTE – The default list of parameters is shown in table 4-57 as not readable. This is
because one cannot query directly the name of the default list. However, one can
retrieve the full set of list names, and for each list, it is stated whether this list is
specified to be the default list (see LabelList in F3.16).

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-110 February 2021

4.10.6 PROCEDURE STATE TABLE

Table 4-58: Cyclic Report Procedure State Table

No. Incoming Event State 1
(‘inactive’)

State 2
(‘active’)

1 (StartInvocation) IF
 “positive result”
THEN
 (+StartReturn)
 ‘start cyclic timer’
 2
ELSE
 (-StartReturn)
ENDIF

‘procedure to association abort ‘protocol
error’’
 1

2 (StopInvocation) ‘procedure to association abort ‘protocol
error’’

IF
 “positive result”
THEN
 (+StopReturn)
 ‘stop cyclic timer’
 1
ELSE
 (-StopReturn)
ENDIF

3 ‘cyclic timer expired’ Not applicable {periodic delivery}

4 ‘data available’ Not applicable IF
 (NOT “backpressure”)
THEN
 ‘send data to underlying communications
 service’
ELSE
 ‘discard data’
ENDIF

5 ‘invalid PDU ‘xxx’’ ‘procedure to association abort ‘xxx’’ ‘procedure to association abort ‘xxx’’
 1

6 ‘terminate procedure’ ‘terminate itself’ ‘terminate itself’

Table 4-59: Procedure State Table Incoming Event Description References

Event Reference

‘cyclic timer expired’ 4.10.3.2.1

‘invalid PDU ‘xxx’’ 3.2.3.6, 4.2.2.4. ‘xxx’ is one of the diagnostic values specified in
4.2.2.5

‘terminate procedure’ 4.2.3; internal event from the Association Control procedure to all other
procedures of the service instance in response to a protocol abort, a
PEER-ABORT, or an UNBIND

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-111 February 2021

Table 4-60: Procedure State Table Predicate Descriptions

Predicate Evaluates to TRUE if
“positive result” No reason for sending a negative return has been detected; that is, for

the START invocation, none of the conditions in 4.10.4.1.3.1 applies,
and for the STOP invocation, none of the conditions in 3.3.2.7.1
applies.

Table 4-61: Procedure State Table Simple Action References

Name References
‘set cyclic timer to
delivery-cycle value’

4.10.3.1.3

‘start cyclic timer’ 4.10.3.1.3

‘data available’ 4.10.3.2.1

‘restart cyclic timer’ 4.10.3.2.3

‘stop cyclic timer’ 4.10.3.3

‘terminate itself’ 4.10.3.4

Table 4-62: Procedure State Table Compound Action Definitions

Name Actions Performed

{periodic delivery}

IF
 data is available
THEN
 trigger the ‘data available’ incoming event
ENDIF
‘restart cyclic timer’

{start cyclic timer} ‘set cyclic timer to delivery-cycle value’
‘start cyclic timer’

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-112 February 2021

4.11 NOTIFICATION

4.11.1 VERSION NUMBER

The version number of this procedure is 2.

4.11.2 DISCUSSION

4.11.2.1 Purpose

The Notification procedure provides a means by which a service user is able to select from a
set of pre-identified events and subsequently receive notification of the occurrence of those
selected events while the Notification procedure is active.

NOTE – A CSTS can issue notifications without using the Notification procedure by using
a procedure that directly includes the NOTIFY operation. For each such
NOTIFY-extended procedure, the definition of the events that are to be reported
via the NOTIFY operation is specified for that procedure and/or for the service
that incorporates the procedure.

4.11.2.2 Concept

Each instance of a CSTS that incorporates the Notification procedure (hereinafter referred to
as a notification-enabled CSTS) reports on each occurrence of any event belonging to a set of
predefined and selected events.

The set of notifiable events for a CSTS is identified by named event lists, that is, named lists of
Event Labels for that service or the Event Labels or Event Names of individual notifiable
events. The list-of-events parameter includes one of the following: (a) ‘empty’,
signifying that the default list shall be applied; (b) a named list of Event Labels; (c) a
Functional Resource Type; (d) a Functional Resource Name; (e) a procedure type; (f) a
procedure name; or (g) the Event Labels or Names of individual notifiable events.

Each named event list has a string naming that list that represents multiple individual Event
Labels. One special case of a notifiable named event list exists for each notification-enabled
CSTS: the default list. The default list is named as any other list that may exist for the given
CSTS, but it is automatically subscribed to when the list-of-events parameter is left
empty. The definition of the default list is controlled by the specification of the CSTS using the
Notification procedure or by a derived procedure, or it may be delegated to Service
Management.

For a given notification-enabled CSTS, the event list names, the Event Labels represented by
the list names, the Event Labels included in the default list (if any), and the set of Event Labels
or Event Names are defined by the specification of that CSTS. A CSTS using this procedure
will have to:

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-113 February 2021

a) select the Functional Resource Types and procedure types, as well as the associated
events from the Published Identifiers (maintained by SANA);

b) define the grouping of Event Labels into lists and allocate a list name for each list;
and

c) identify which of the defined lists will be the default list.

In starting the Notification procedure as part of a CSTS, the service user subscribes to the
particular events that are to be reported by that procedure in one of the following ways:

a) by leaving the list-of-events unspecified (i.e., set to ‘empty’); then for each
Event Label represented by the default list of Event Labels, the reporting of the
associated events is enabled;

b) by specifying the name of a list of Event Labels that represents a predefined set of
Event Labels;

c) by selecting a Functional Resource Type, thereby enabling the reporting of all events
belonging to the instances of that Functional Resource Type that is directly associated
with the CSTS executing the Notification procedure;

d) by selecting a Functional Resource Name, thereby enabling the reporting of all events
belonging to that Functional Resource Instance;

e) by selecting a procedure type, thereby enabling the reporting of all configuration
change events of all procedure instances of the given procedure type associated with
the service instance executing the Notification procedure;

f) by selecting a procedure name, thereby enabling the reporting of all configuration
change events belonging to that procedure instance; or

g) by listing the Event Labels or Event Names of the individual events that are
reportable by that service instance.

The operations defined in this procedure allow a service user to interact with a service
provider to

a) request the start of reporting on the occurrence of any of the set of pre-identified
notifiable events;

b) receive notification of the occurrence of the specified events; and

c) stop, and optionally later re-start, the delivery of event notifications, applying the
same or a different selection of notifiable events.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-114 February 2021

4.11.3 BEHAVIOR

4.11.3.1 Starting

NOTE – The service user selects the subset of notifiable events to which he wishes to
subscribe by means of the START invocation. The selected events will be
notified on their occurrence.

4.11.3.1.1 The service provider shall send a positive START return and perform the START
operation invoked by the service user except if

a) the production-status parameter value is ‘halted’, in which case the START
operation shall be rejected by sending a negative START return with the
diagnostic value set to ‘out of service’;

b) none of the conditions specified in 4.11.3.1.2 is met, in which case the START
operation shall be rejected by sending a negative START return with the
diagnostic set to the applicable value, as specified in 4.11.4.1.3.1; or

c) the procedure is in State 2 (‘active’), in which case the procedure shall request the
Association Control procedure to abort the association with setting the diagnostic
value to ‘protocol error’.

4.11.3.1.2 A START invocation for the Notification procedure is valid if it meets any one of
the following conditions:

a) if the list-of-events parameter is ‘empty’, signifying subscription to the
default list of Event Labels, provided such a default list has been established;

b) if the list-of-events parameter contains one event list name for a list of Event
Labels that is contained in the set of label lists that has been established for the CSTS
for use by the Notification procedure;

c) if the list-of-events parameter contains one Functional Resource Type that is
associated with the service instance that executes the Notification procedure;

d) if the list-of-events parameter contains one name of a Functional Resource Instance
that is associated with the service instance that executes the Notification procedure;

e) if the list-of-events parameter contains one procedure type that is associated
with the service instance that executes the Notification procedure;

f) if the list-of-events parameter contains one procedure name of a procedure instance
that is associated with the service instance that executes the Notification procedure;

g) if (1) the list-of-events parameter contains one or more Functional Resource
Event Names or Event Labels, and (2) every one of those labels or names is the label
or name of an event of a Functional Resource that is associated with the service
instance that executes the Notification procedure;

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-115 February 2021

h) if (1) the list-of-events parameter contains one or more procedure
configuration change Event Labels or Event Names, and (2) every one of these labels
or names is the label or name of an event of a configured procedure that is associated
with the service instance that executes the Notification procedure.

4.11.3.1.3 Upon success of the START operation, the Notification procedure instance shall
be subscribed to the published events identified in the START invocation.

4.11.3.2 Notifying Occurrences of Events

4.11.3.2.1 The NOTIFY invocation is valid only in the procedure state ‘active’ and shall be
invoked only by the service provider.

4.11.3.2.2 Upon the occurrence of any of the notifiable events to which the procedure
instance has been subscribed (see 4.11.3.1), the service provider shall invoke the NOTIFY
operation to inform the service user of the occurrence of the event. If the list-of-
events parameter

a) is left empty, then

1) for each Functional Resource Event Label in the default list (see annex E), the
service provider shall notify the occurrence of the event (see annex C) for that
label for each Functional Resource Instance of the given type that is directly
associated with the service instance that executes the Notification procedure; and

2) for each procedure configuration change Event Label in the default list, the
service provider shall notify the occurrence of the event for that label for every
configured instance of the procedure that is associated with the service instance
that executes the Notification procedure;

b) contains the name of a list of Event Labels, then

1) for each Functional Resource Event Label in the named list, the service provider
shall notify the occurrence of the event for that label for the Functional Resource
Instances of the given type that are directly associated with the service instance
that executes the Notification procedure; and

2) for each procedure configuration change Event Label in the named list, the
service provider shall notify the occurrence of the event for that label for every
configured instance of the procedure that is associated with the service instance
that executes the Notification procedure;

c) contains a Functional Resource Type, then the service provider shall notify the
occurrence of all events for all instances of that Functional Resource Type that are
directly associated with the service instance that executes the Notification procedure;

d) contains a Functional Resource Name, then the service provider shall notify the
occurrence of all events of the named Functional Resource Instance;

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-116 February 2021

e) contains a procedure type, then the service provider shall notify the occurrence of any
configuration parameter change event for all configured instances of the procedure
type that are associated with the service instance executing the Notification
procedure;

f) contains a procedure name, then the service provider shall notify any occurrence of a
configuration parameter change event for that procedure instance;

g) contains any Functional Resource Event Labels, then for each label the service
provider shall notify the occurrence of the event for that label for each Functional
Resource Instance of the given type that is directly associated with the service
instance that executes the Notification procedure;

h) contains any procedure configuration change Event Labels, then for each label the
service provider shall notify the occurrence of the event for that label for every
configured instance of the procedure that is associated with the service instance that
executes the Notification procedure;

i) contains one or more Event Names, then the service provider shall notify the
occurrence of any of the listed events.

4.11.3.2.3 If an event is subscribed in terms of an individual Event Name, the corresponding
event-name parameter (see 3.11.2.2.3.1) shall contain that Event Name.

4.11.3.2.4 The service specification or derived procedure shall specify the conditions under
which it is permissible or required to use the Event Label or Event Name in an event-
name parameter that corresponds to an event that is subscribed in terms of an Event Label.

4.11.3.3 Stopping

When receiving a valid STOP invocation, the procedure shall disable the generation of
notifications of the occurrence of previously subscribed events.

4.11.3.4 Terminating

Upon receipt of a ‘terminate procedure’ event from the Association Control procedure, the
procedure shall terminate by

a) discarding the pending notification; and

b) releasing the resources.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-117 February 2021

4.11.4 REQUIRED OPERATIONS

Table 4-63: Notification Procedure Required Operations

Operations Source Extended Refined
Procedure

Blocking/Non-Blocking
START Common Y N Blocking

STOP Common N N Blocking

NOTIFY Common N N Non-Blocking

4.11.4.1 START (Confirmed)

4.11.4.1.1 General

The Notification procedure shall extend the START operation defined in 3.7.2 through the
addition of one parameter to the invocation and through the addition of values for the
diagnostic parameter of the return.

4.11.4.1.2 Operation Parameters Definitions

NOTE – Table 4-64 shows the extension parameters of the START operation defined by
this procedure.

Table 4-64: START Extension Parameters

Extension Parameters Invocation Return
list-of-events M

4.11.4.1.2.1 Extension Parameters Syntax

The type NotificationStartInvocExt, as defined in F3.13, shall specify the syntax
of the extension parameter of the START invocation.

4.11.4.1.2.2 list-of-events

4.11.4.1.2.2.1 The list of events or the named event lists that can be requested shall be
defined by the service using this procedure or by a procedure derived from this procedure or
may be delegated to Service Management.

4.11.4.1.2.2.2 The list-of-events parameter shall contain one of the following:

a) ‘empty’, which signifies that the service provider shall notify the events defined in
the default list of events;

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-118 February 2021

b) one named event list that defines a predefined set of Event Labels that represent the
notifiable events that are to be reported to the service user upon their occurrence;

c) one Functional Resource Type, in which case the occurrence of events related to any
of the instances of the Functional Resource Type associated with the service instance
in which the Notification procedure executes shall be notified to the service user;

d) one Functional Resource Name, for which all associated events shall be notified to
the service user upon their occurrence;

e) one procedure type, in which case the occurrence of any change of the configuration
parameters of all configured procedure instances of that procedure type associated
with the service instance in which the Notification procedure executes shall be
notified to the service user;

f) one procedure name, in which case the occurrence of any change of the configuration
parameters of that procedure instance shall be notified to the service user; or

g) one or more individual Event Labels or Event Names of the notifiable events that are
to be reported to the service user upon their occurrence.

4.11.4.1.2.2.3 A service using this procedure or a procedure derived from this procedure
may define additional individual notifiable events. For each additional individual notifiable
event, an Event Label and (optionally) an event value (along with its type, the associated
OID and range) shall be defined.

4.11.4.1.2.2.4 The procedure shall notify the occurrence of any of those additional
individual notifiable events if the list-of-events parameter in the START invocation
contains the Event Label or Event Name of each notifiable event to be reported.

NOTE – Notifiable Event Labels that are added by services using this procedure or by
procedures derived from this procedure may also be included in the list of Event
Labels represented by a named event list.

4.11.4.1.2.2.5 A service using this procedure or a procedure derived from this procedure may
define one or more lists of Event Labels. Each list shall have an event list name defined for it.

4.11.4.1.2.2.6 If the list-of-events parameter in the START invocation contains the
name of a notifiable named event list, the procedure shall notify the occurrence of the events
identified by that named event list.

4.11.4.1.2.2.7 A service using this procedure or a procedure derived from this procedure
may define a single list of notifiable events as the default list.

NOTE – The default list is a named event list; that is, a name is assigned to the default list.
However, it is also flagged to serve as the default list and can therefore be
selected by setting the list-of-events parameter to ‘empty’. (See
ListOfParametersEvents in F3.3.)

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-119 February 2021

4.11.4.1.2.2.8 Each named event list shall contain the Event Identifiers and associated
Functional Resource Types of individually published events (see annex E).

4.11.4.1.2.2.9 The Event Identifiers shall be defined using Published Identifiers.

4.11.4.1.2.2.10The named event list name shall be defined using a string.

4.11.4.1.3 diagnostic Parameter Extension Value Definitions and Syntax

4.11.4.1.3.1 If a negative START return is sent, the diagnostic parameter shall use one
of the diagnostic values specified in 3.7.2.3, or one of the following values:

a) ‘default not defined’—the default list (list-of-events set to ‘empty’) is
unknown to the service provider.

b) ‘unknown list name’— the list name contained in the list-of-parameters is
unknown to the service provider. The unknown list name shall be returned with the
diagnostic.

c) ‘unknown Functional Resource Type’—the Functional Resource Type contained in the
list-of-events parameter is unknown to the service provider (see 4.11.4.1.2.2), or
the Functional Resource Type is not associated with the service instance that executes
the Notification procedure. The unknown Functional Resource Type shall be returned
with the diagnostic.

d) ‘unknown Functional Resource Name’—while the Functional Resource Type is
known, the Functional Resource Name contained in the list-of-events
parameter is unknown to the service provider (see 4.11.4.1.2.2), or the Functional
Resource Name is not associated with the service instance that executes the
Notification procedure. The unknown Functional Resource Name shall be returned
with the diagnostic.

e) ‘unknown procedure type’—the procedure type contained in the list-of-events
parameter is unknown to the service provider (see 4.11.4.1.2.2). The unknown
procedure type shall be returned with the diagnostic.

f) ‘unknown procedure name’—while the procedure type is known, the procedure name
contained in the list-of-events parameter is unknown to the service provider
(see 4.11.4.1.2.2). The unknown procedure name shall be returned with the
diagnostic.

g) ‘unknown event identifier’—one or more Event Identifiers contained in the list-
of-events parameter are unknown to the service provider (see 4.11.4.1.2.2) for
one of the following reasons:

1) the Functional Resource specified as part of the Event Name is not associated
with the service instance executing the given Notification procedure instance;

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-120 February 2021

2) the Functional Resource Type or procedure type specified as part of the Event
Label is not associated with the service instance executing the given Notification
procedure instance;

3) an event with the given Published Identifier does not exist for the specified
Functional Resource Type;

4) an event with the given Published Identifier does not exist for the specified
procedure type.

 The list of unknown Event Names or Event Labels shall be returned with the
diagnostic. For each unknown Event Identifier that is contained in an Event
Name in the list-of-events, the Event Name shall be returned. For each
unknown Event Identifier that is contained in an Event Label in the list-of-
events, the Event Label shall be returned.

4.11.4.1.3.2 The type NotificationStartDiagnosticExt, as defined in F3.13,
shall specify the syntax of the diagnostic parameter of the START return, extended as
listed in 4.11.4.1.3.1.

4.11.5 CONFIGURATION PARAMETERS

The Notification procedure configuration parameters that need to be configured in the
context of the procedure shall be as defined in table 4-65.

NOTE – For each configuration parameter, the table provides a cross reference to the use
of the parameter in the specification of the procedure, identifies whether the
parameter may be read, and also identifies the Parameter Identifier and type to be
used in reporting the value of the parameter. None of the configuration
parameters of this procedure can be dynamically changed while the service
instance executing the procedure is bound.

Table 4-65: Notification Procedure Configuration Parameters

Parameters
Cross-

Reference Readable
Configuration Parameter

Identifier and Type (F3.16)
named label lists 4.11.3.2.2 b) Yes pNnamedLabelLists

PNnamedLabelListsType

default list of events 4.11.4.1.2.2.7 No N/A

NOTE – The default list of events is shown in table 4-65 as not readable. This is because
one cannot query directly the name of the default list. However, one can retrieve
the full set of list names, and for each named event list, it is stated whether this
list is specified to be the default list.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-121 February 2021

4.11.6 PROCEDURE STATE TABLE

Table 4-66: Notification Procedure State Table

No. Incoming Event State 1
(‘inactive’)

State 2
(‘active’)

1 (StartInvocation) IF
 “positive result”
THEN
 (+StartReturn)
 ‘enable event notification for
 selected events’
 2
ELSE
 (-StartReturn)
ENDIF

‘procedure to association abort ‘protocol
error’’
 1

2 (StopInvocation) ‘procedure to association abort
‘protocol error’’

IF
 “positive result”
THEN
 (+StopReturn)
ELSE
 (-StopReturn)
ENDIF

3 ‘notifiable event occurred’ Not applicable ‘notify ‘notifiable event’ / ‘event value’’

4 ‘invalid PDU ‘xxx’’ ‘procedure to association abort ‘xxx’’ ‘procedure to association abort ‘xxx’’
 1

5 ‘terminate procedure’ ‘terminate itself’ ‘terminate itself’

Table 4-67: Procedure State Table Event Description References

Event Reference
‘notifiable event occurred’ 4.11.3.2

‘invalid PDU ‘xxx’’ 3.2.3.6, 4.2.2.4. ‘xxx’ is one of the diagnostic values specified in
4.2.2.5.

‘terminate procedure’ 4.2.3, internal event from the Association Control procedure to all
other procedures of the service instance in response to a protocol
abort, a PEER-ABORT, or an UNBIND.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-122 February 2021

Table 4-68: Procedure State Table Predicate Descriptions

Predicate Evaluates to TRUE if
“positive result” No reason for sending a negative return has been detected; that is,

for the START invocation none of the conditions in 4.11.4.1.3.1
applies, and for the STOP invocation none of the conditions in
3.3.2.7.1 applies.

Table 4-69: Procedure State Table Simple Action References

Name References
‘create a notification’ 4.11.3.2.2

‘notify ‘xxx’ / ’yyy’’ 4.11.3.2.2, (NotifyInvocation) with event-name set to ‘xxx’ and
event-value set to ‘yyy’. In case a notification does not use an
event-value, ‘yyy’ shall be set to ‘empty’

‘procedure to association
abort ‘xxx’’

4.2.2.3, 4.2.2.5, raise ‘procedure to association abort ‘xxx’’ event
with diagnostic set to ‘xxx’ to the Association Control procedure

‘terminate itself’ 4.11.3.4

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-123 February 2021

4.12 THROW EVENT

4.12.1 VERSION NUMBER

The version number of this procedure is 2.

4.12.2 DISCUSSION

4.12.2.1 Purpose

The Throw Event procedure provides the capability for a service user to request the service
provider to initiate predefined actions to be performed by the EM of the ESLT, to receive
acknowledgements of successful receipt of the requests, and to receive reports of the final
outcomes of the actions from the service provider.

The service provider executes the actions and checks the guard conditions applicable to the
actions. The guard conditions are the conditions under which the service provider can
properly and safely execute the actions. The guard conditions are defined by the service
using this procedure or by the Functional Resources and their parameters the procedure shall
act on.

4.12.2.2 Concept

The Throw Event procedure is intended for use in Cross Support Transfer Services that involve
the modification of operating parameters of a Provider CSSS during the execution of a service
package. The procedure may be incorporated into a CSTS to provide a capability to modify:

a) dynamically modifiable configuration parameters of the procedures of a given CSTS
instance (refer to 3.13.1.1 b));

b) production parameters associated with the data being transferred by that transfer
service (e.g., a service whose primary purpose is to deliver commands to the space
element, which uses the Throw Event procedure to modify the link parameters used
to deliver those commands); or

c) production parameters of the Provider CSSS independent of any data transfer via that
transfer service (e.g., a service whose purpose is to control parameters of production
functions that support multiple Cross Support Service instances, and for which no
single service instance has the authority to modify those parameters on behalf of the
service user).

NOTE – If the directed action cannot be completed by the CSTS provider itself (e.g., it
must be performed by the EM of the ESLT), then the service provider must
forward the directive to the appropriate EM of the ESLT for completion of the
action.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-124 February 2021

No specific directives or actions that these directives would trigger are defined as part of the
Throw Event procedure. Each service that uses this procedure defines the directives and the
associated actions. Also, Functional Resources may specify such directives that are intended
to modify the Functional Resource configuration.

NOTE – The service itself may defer the definition of the actions to a bilateral agreement
between the service providing and service using organizations.

This procedure uses only one operation: the EXECUTE-DIRECTIVE. It allows the service
user to transmit a directive to the service provider.

The service user may invoke the EXECUTE-DIRECTIVE operations at any time that the
service instance is in the state ‘bound’.

4.12.3 BEHAVIOR

4.12.3.1 Activities

NOTE – The service user can request the performance of a predefined action by the EM of
an ESLT by invoking the EXECUTE-DIRECTIVE operation.

4.12.3.1.1 The service provider shall acknowledge the receipt of a valid request and deny
any invalid request contained in an incoming EXECUTE-DIRECTIVE invocation.

4.12.3.1.2 If the request is valid, the service provider shall subsequently report on the
success or failure of the requested action.

4.12.3.1.3 The service using this procedure or the Functional Resources this procedure is
acting on shall define the guard conditions required to execute the predefined actions
properly and safely.

4.12.3.2 Acknowledging Directives

4.12.3.2.1 If the invocation is a valid directive, the service provider shall:

a) send a positive acknowledgement; and

b) begin performing the requested action (see 4.12.3.3).

4.12.3.2.2 If the invocation is not a valid directive, the service provider shall:

a) send a negative acknowledgement; and

b) not perform the requested action.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-125 February 2021

4.12.3.3 Performing Directed Actions

4.12.3.3.1 The EM of the ESLT shall attempt to perform the directed action. There are no
time constraints imposed by the Throw Event procedure on the completion of the action.

NOTE – Procedures derived from the Throw Event procedure may impose time
constraints on the completion of the directed action.

4.12.3.3.2 A single action may involve setting of more than one parameter.

4.12.3.3.2.1 In this case, the individual parameters shall be set in the same sequence as
specified in the directive-qualifier parameter.

4.12.3.3.2.2 Parameter-specific guard conditions shall be evaluated only after setting of the
previous parameter in the sequence has completed.

NOTE – This approach ensures that each guard condition is checked only once preceding
configuration changes have taken effect, and therefore the check is performed
based on the up-to-date status.

4.12.3.3.3 When the action is successfully completed, the service provider shall send a
positive return.

4.12.3.3.4 If the action cannot be successfully completed, the service provider shall send a
negative return.

4.12.3.3.5 After having sent the return of the EXECUTE-DIRECTIVE operation, the service
provider shall cease performing the operation.

4.12.3.4 Terminating

Upon receipt of a ‘terminate procedure’ event from the Association Control procedure, the
procedure shall terminate by:

a) ceasing the performing of any ongoing EXECUTE-DIRECTIVE operations; and

b) releasing the resources.

NOTE – If the execution of directed actions is not yet completed at the time the Throw
Event procedure is terminated, completion of these actions will not be reported
by this procedure and will have to be determined by other means.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-126 February 2021

4.12.4 REQUIRED OPERATIONS

Table 4-70: Throw Event Procedure Required Operations

Operations Source Extended Refined
Procedure

Blocking/Non-Blocking
EXECUTE-
DIRECTIVE

Common Y N Non-Blocking

4.12.4.1 EXECUTE-DIRECTIVE (Acknowledged)

4.12.4.1.1 General

The Throw Event procedure shall extend the EXECUTE-DIRECTIVE operation defined in
3.13 through the addition of one value for the diagnostic parameter of the
acknowledgement and return.

4.12.4.1.2 Invocation, Acknowledgement, Return, and Parameters

The common parameters of the EXECUTE-DIRECTIVE (acknowledged) operation are
defined in 3.13.2.

4.12.4.1.3 diagnostic Parameter Extension Value Definition and Syntax

NOTE – Whenever a negative acknowledgement has been sent by the service provider, the
action identified by the directive-identifier parameter has not been
performed. Whenever a negative return has been sent by the service provider, the
action identified by the directive-identifier parameter has either been
performed only partially or not at all. The negative return provides the detailed
information regarding the extent to which a requested action has been performed,
for example, for which Functional Resource parameters the update has failed.

4.12.4.1.3.1 If an EXECUTE-DIRECTIVE negative acknowledgement is sent, the
diagnostic parameter shall use one of the diagnostic values specified in 3.13.2.3.1.

4.12.4.1.3.2 If an EXECUTE-DIRECTIVE negative return is sent, the diagnostic
parameter shall use one of the following values:

a) one of the diagnostic values specified in 3.13.2.3.3;

b) the value ‘guard condition evaluated to false’—a required condition was found not to
be met.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-127 February 2021

4.12.4.1.3.3 The type TeExecDirNegReturnDiagnosticExt, as defined in F3.14,
shall specify the syntax of the diagnostic parameter of the EXECUTE-DIRECTIVE
return, extended as listed in 4.12.4.1.3.2.

4.12.5 CONFIGURATION PARAMETERS

An instance of the Throw Event procedure requires no configuration. Any information
related to the capabilities accessible through the Throw Event procedure will be governed by
the directives that are supported by the ESLT that hosts the CSTS provider and/or the
Service Agreement that establishes the capabilities that are provided to the individual user
mission.

4.12.6 PROCEDURE STATE TABLE

Table 4-71: Throw Event Procedure State Table

No. Incoming Event State 1
(‘inactive’)

State 2
(‘active’)

1 (ExecuteDirectiveInvocation) IF
 “valid directive”
THEN
 ‘initiate action’
 (+ExecuteDirectiveAcknowledge)
 2
ELSE
 (-ExecuteDirectiveAcknowledge)
ENDIF

IF
 “valid directive”
THEN
 ‘initiate action’
 (+ExecuteDirectiveAcknowledge)
ELSE
 (-ExecuteDirectiveAcknowledge)
ENDIF

2 ‘action completed [N]’ (+ExecuteDirectiveReturn) [N]
IF
 ‘no other operation invocation is awaiting
 return’
THEN
 1
ENDIF

3 ‘action not successfully
completed [N]’

 (-ExecuteDirectiveReturn) [N]
IF
 ‘no other operation invocation is awaiting
 return’
THEN
 1
ENDIF

4 ‘invalid PDU ‘xxx’’ ‘procedure to association abort ‘xxx’’ ‘procedure to association abort ‘xxx’’
 1

5 ‘terminate procedure’ ‘terminate itself’ ‘terminate itself’

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page 4-128 February 2021

Table 4-72: Procedure State Table Incoming Event Description References

Event Reference
‘action completed’ 4.12.3.3.3

‘action not successfully completed’ 4.12.3.3.4

‘invalid PDU ‘xxx’’ 3.2.3.6, 4.2.2.4; ‘xxx’ is one of the diagnostic values
specified in 4.2.2.5

‘terminate procedure’ 4.2.3, internal event from the Association Control procedure to
all other procedures of the service instance in response to a
protocol abort, a PEER-ABORT, or an UNBIND

Table 4-73: Procedure State Table Predicate Definitions

Predicate Evaluates to TRUE if
“valid directive” None of the error conditions identified in 4.12.4.1.3.1 is true for

the EXECUTE-DIRECTIVE invocation

Table 4-74: Procedure State Table Simple Action References

Name References
‘initiate action’ 4.12.3.3.1

‘procedure to association abort
‘xxx’’

4.2.2.3, 4.2.2.5, raise ‘procedure to association abort ‘xxx’’
event with diagnostic set to ‘xxx’ to the Association Control
procedure

‘terminate itself’ 4.12.3.4

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page A-1 February 2021

ANNEX A

IMPLEMENTATION CONFORMANCE STATEMENT PROFORMA

(NORMATIVE)

A1 INTRODUCTION

A1.1 OVERVIEW

Although it might be possible to implement a software library on the basis of this
specification, the prime intent of this document is to provide a framework for the
specification of Cross Support Transfer Services. Such a service specification will provide a
specification for all elements that are left abstract in this document and can thus be
implemented.

As the baseline for the specification of Cross Support Transfer Services, implementation
conformance in this Recommended Standard is expressed with regard to the protocol on the
interface between the user and the provider of CSTSes. Therefore the ICS is a Protocol ICS
(PICS).

As an aide to the creation of the PICS proforma for transfer services developed on the basis
of this document, this annex provides the PICS Requirements List (RL) for the elements
specified herein. Service specifications are expected to import this RL and to create a
service-specific profile on this basis.

The RL support column in this annex is blank. An implementation’s completed RL is called
the PICS. The PICS states which capabilities and options have been implemented. The
following can use the PICS:

a) the implementer, as a checklist to reduce the risk of failure to conform to the standard
through oversight;

b) a supplier or potential acquirer of the implementation, as a detailed indication of the
capabilities of the implementation, stated relative to the common basis for
understanding provided by the standard PICS proforma;

c) a user or potential user of the implementation, as a basis for initially checking the
possibility of interworking with another implementation (it should be noted that,
while interworking can never be guaranteed, failure to interwork can often be
predicted from incompatible PICSes);

d) a tester, as the basis for selecting appropriate tests against which to assess the claim
for conformance of the implementation.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page A-2 February 2021

A1.2 ABBREVIATIONS AND CONVENTIONS

The RL consists of information in tabular form. The status of features is indicated using the
abbreviations and conventions described below.

Item Column

The item column contains a prefix identifying the element the given table is referring to and
sequential numbers for items in the table.

Feature Column

The feature column contains a brief descriptive name for a feature. It implicitly means: ‘Is
this feature supported by the implementation?’

Status Column

The status column uses the following notations:

a) M mandatory;

b) O optional;

c) O<n> optional, but support of at least one of the group of options labeled by
the same numeral <n> is required;

d) C<n> conditional as defined in corresponding expression below the table;

e) X prohibited;

f) N/A not applicable.

Support Column Symbols

The support column is to be used by the implementer to state whether a feature is supported
by entering Y, N, or N/A, indicating

a) Y Yes, supported by the implementation;

b) N No, not supported by the implementation;

c) N/A Not applicable.

The support column should also be used, when appropriate, to enter values supported for a
given capability.

Allowed Values Column

All PDU parameter types are specified in annex F using ASN.1. The ASN.1 data type
specifications constrain among others the permissible value range, and therefore such
constraints are not repeated in the Allowed Values column in the tables contained in this

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page A-3 February 2021

annex. However, if a parameter is constrained for all instances of the given PDU to a subset
of the range or set specified for that parameter in annex F, then the subset is identified in the
tables that contain the PDU parameters.

Allowed Values Column Symbols

If the specification of allowed values is too large to fit in the Allowed Values cell, the
Allowed Values column uses the notation ‘AV<n>’ as an indication that the allowed values
are specified below the table.

Supported Values Column

The Supported Values column is to be used by the implementer to state whether the specified
range or set of values for the parameter is supported by entering Y or SV<n>, indicating

a) Y Yes, the range/set defined in the Recommended Specification is fully
supported by the implementation;

b) SV<n> The range/set defined in the Recommended Standard is not fully
supported by the implementation. The supported subset is documented
below the table.

A1.3 INSTRUCTIONS FOR COMPLETING THE RL

An implementer shows the extent of compliance to the Recommended Standard by
completing the RL; that is, the state of compliance with all mandatory requirements and the
options supported are shown. The resulting completed RL is called PICS. The implementer
shall complete the RL by entering appropriate responses in the support or values supported
column, using the notation described in A1.2. If a conditional requirement is inapplicable,
N/A should be used. If a mandatory requirement is not satisfied, exception information must
be supplied by entering a reference Xi, where i is a unique identifier to an accompanying
rationale for the noncompliance.

A2 PICS PROFORMA FOR XYZ CSTS PROTOCOL (CCSDS 9NM.I-B-K)

A2.1 GENERAL INFORMATION

The PICS for a CSTS implementation shall encompass the filled-in tables A-1 to A-4.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page A-4 February 2021

Table A-1: Identification of PICS

Date of Statement
(DD/MM/YYYY)

PICS Serial Number

System Conformance
Statement Cross-Reference

Table A-2: Identification of Implementation under Test

Implementation name

Implementation version

Special configuration

Other information

Table A-3: Identification of Supplier

Supplier

Contact Point for Queries

Implementation Name(s) and
Versions

Other information necessary
for full identification, for
example, name(s) and
version(s) for machines and/or
operating systems, system
name(s)

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page A-5 February 2021

Table A-4: Identification of Specification

CCSDS 9NM.I-B-K

Have any exceptions been required?

NOTE – A YES answer means that the
implementation does not conform to the
Recommended Standard. Non-supported
mandatory capabilities are to be identified in the
PICS, with an explanation of why the
implementation is nonconforming.

Yes [] No []

A2.2 REQUIREMENTS LIST

This subsection provides the RLs for the elements specified in this Recommended Standard.
Depending on which procedures and associated PDUs are actually used in a CSTS
specification, the relevant subset of the tables A-5 to A-24 will become part of the service-
specific PICS proforma.

Table A-5: Required Procedures

Procedures

Item Description Reference Status Support
proc-1 Association Control 4.3 M

proc-2 Unbuffered Data Delivery 4.4 O

proc-3 Buffered Data Delivery 4.5 O

proc-4 Data Processing 4.6 O

proc-5 Buffered Data Processing 4.7 O

proc-6 Sequence-Controlled Data
Processing

4.8 O

proc-7 Information Query 4.9 O

proc-8 Cyclic Report 4.10 O

proc-9 Notification 4.11 O

proc-10 Throw Event 4.12 O

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page A-6 February 2021

Table A-6: Required PDUs

Item PDU Ref.

Service
Provider
System

Service
User

System

St
at

us

Su
pp

or
t

St
at

us

Su
pp

or
t

pdu-1 BindInvocation F3.5 M M
pdu-2 BindReturn F3.5 M M
pdu-3 PeerAbortInvocation F3.5 M M
pdu-4 UnbindInvocation F3.5 M M
pdu-5 UnbindReturn F3.5 M M
pdu-6 ExecuteDirectiveAcknowledge F3.4 C1 C1
pdu-7 ExecuteDirectiveInvocation F3.4 C1 C1
pdu-8 ExecuteDirectiveReturn F3.4 C1 C1
pdu-9 GetInvocation F3.4 C2 C2
pdu-10 GetReturn F3.4 C2 C2
pdu-11 NotifyInvocation F3.4 C3 C3
pdu-12 ProcessDataInvocation F3.4 C4 C4
pdu-13 ProcessDataReturn F3.4 C5 C5
pdu-14 StartInvocation F3.4 C6 C6
pdu-15 StartReturn F3.4 C6 C6
pdu-16 StopInvocation F3.4 C6 C6
pdu-17 StopReturn F3.4 C6 C6
pdu-18 TransferDataInvocation F3.4 C7 C7
pdu-19 ReturnBuffer F3.7 C8 C8
pdu-20 ForwardBuffer F3.9 C9 C9

C1 IF proc-6 OR proc-10 THEN M ELSE N/A
C2 IF proc-7 THEN M ELSE N/A
C3 IF proc-3 OR proc-4 OR proc-5 OR proc-6 OR proc-9 THEN M ELSE N/A
C4 IF proc-4 OR proc-5 OR proc-6 THEN M ELSE N/A
C5 IF proc-6 THEN M ELSE N/A
C6 IF proc-2 OR proc-3 OR proc-4 OR proc-5 OR proc-6 OR proc-8 OR proc-9 THEN

M ELSE N/A
C7 IF proc-2 OR proc-3 OR proc-8 THEN M ELSE N/A
C8 If proc-3 THEN M ELSE N/A
C9 If proc-5 THEN M ELSE N/A

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page A-7 February 2021

Table A-7: BIND Invocation Parameters

Parameters of the BindInvocation PDU

Item Parameter Ref.

St
at

us

Su
pp

or
t

Values

A
llo

w
ed

Su
pp

or
te

d

bindInv-1 invokerCredentials F3.3 M

bindInv-2 invokeId F3.3 M

bindInv-3 procedureName F3.3 M AV1

bindInv-4 initiatorIdentifier F3.5 M

bindInv-5 responderPortIdentifier F3.5 M

bindInv-6 serviceType F3.5 M

bindInv-7 versionNumber F3.5 M

bindInv-8 serviceInstanceIdentifier F3.5 M

bindInv-9 bindInvocationExtension F3.5 M AV2

AV1 For the BIND invocation, the procedureRole element of the parameter bindInv-3

must be set to ‘associationControl’.

AV2 If parameters need to be added to the BIND invocation PDU, the parameter
bindInv-9 can be used to do so, but no such extension is defined in this
Recommended Standard, and extension of the BIND invocation PDU, although
permissible, is discouraged (see 4.3.3.1.13). Except if a procedure derived from the
parent Association Control procedure that is using this PDU specifies such
extension, the value of this parameter shall be set to ‘notUsed’.

The parameters bindInv-1, bindInv-2, and bindInv-3 are contained in the complex parameter
standardInvocationHeader in the BindInvocation type shown in F3.5. This parameter is
of the type StandardInvocationHeader that is specified in F3.3.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page A-8 February 2021

Table A-8: BIND Return Parameters

Parameters of the BindReturn PDU

Item Parameter Ref.

St
at

us

Su
pp

or
t

Values

A
llo

w
ed

Su
pp

or
te

d

bindRet-1 performerCredentials F3.3 M
bindRet-2 invokeId F3.3 M

bindRet-3 result F3.3 M

bindRet-4 positive F3.3 C10 AV3

bindRet-5 diagnostic F3.3 C11 AV4

bindRet-6 negExtension F3.3 C11 AV5

bindRet-7 responderIdentifier F3.5 M

C10 IF bindRet-3 = ‘positive’ THEN M ELSE X
C11 IF bindRet-3 = ‘negative’ THEN M ELSE X

AV3 If parameters need to be added to the positive BIND return PDU, the parameter

bindRet-4 can be used to do so, but no such extension is defined in this
Recommended Standard, and extension of the BIND return PDU, although
permissible, is discouraged (see 4.3.3.1.13). Except if a procedure derived from the
parent Association Control procedure and using this PDU specifies such extension,
the value of this parameter shall be set to ‘notUsed’.

AV4 For the negative BIND return, the parameter bindRet-5 is extended by the type
AssocBindDiagnosticExt, defined in F3.5. Therefore the parameter bindRet-5
may have (a) any value defined for the Diagnostic type in F3.3 except
‘diagnosticExtension’; or (b) any value defined by ‘diagnosticExtension’:
‘acBindDiagExt’: ‘AssocBindDiagnosticExt’, defined in F3.5, except
‘assocBindDiagnosticExtExtension’. Additional values can be introduced by the
further extension ‘diagnosticExtension’: ‘acBindDiagExt’:
‘AssocBindDiagnosticExt’: ‘assocBindDiagnosticExtExtension’, but such extension
is discouraged (see 4.3.3.1.13) and not specified in this Recommended Standard.

AV5 If parameters need to be added to the negative BIND return PDU, the parameter
bindRet-6 can be used to do so, but no such extension is defined in this
Recommended Standard, and extension of the BIND return PDU, although
permissible, is discouraged (see 4.3.3.1.13). Except if a procedure derived from the
parent Association Control procedure and using this PDU specifies such extension,
the value of this parameter shall be set to ‘notUsed’.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page A-9 February 2021

All parameters of the BIND return PDU except bindRet-7 are contained the complex
parameter of the type StandardReturnHeader that is specified in F3.3. Specific
extensions are, however, specified in F3.5.

Table A-9: PEER-ABORT Invocation Parameters

Parameters of the PeerAbortInvocation PDU

Item Parameter Ref.

St
at

us

Su
pp

or
t

Values

A
llo

w
ed

Su
pp

or
te

d

peerAbortInv-1 diagnostic F3.5 M 40 .. 126

If an implementation uses the PEER-ABORT diagnostic value 'other reason' (126), the
conditions under which that is done shall be specified (see 3.3.2.7.2).

Table A-10: UNBIND Invocation Parameters

Parameters of the UnbindInvocation PDU

Item Parameter Ref.

St
at

us

Su
pp

or
t

Values

A
llo

w
ed

Su
pp

or
te

d
unbindInv-1 invokerCredentials F3.3 M

unbindInv-2 invokeId F3.3 M

unbindInv-3 procedureName F3.3 M AV6

unbindInv-4 unbindInvocationExtension F3.5 M AV7

AV6 For the UNBIND invocation, the procedureRole element of the parameter

unbindInv-3 must be set to ‘associationControl’.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page A-10 February 2021

AV7 If parameters need to be added to the UNBIND invocation PDU, the parameter
unbindInv-4 can be used to do so, but no such extension is defined in this
Recommended Standard, and extension of the UNBIND invocation PDU, although
permissible, is discouraged (see 4.3.3.1.13). Except if a procedure derived from the
parent Association Control procedure and using this PDU specifies such extension,
the value of this parameter shall be set to ‘notUsed’.

The parameters unbindInv-1, unbindInv-2, and unbindInv-3 are contained in the complex
parameter standardInvocationHeader in the UnbindInvocation type shown in F3.5. This
parameter is of the type StandardInvocationHeader that is specified in F3.3.

Table A-11: UNBIND Return Parameters

Parameters of the UnbindReturn PDU

Item Parameter Ref.

St
at

us

Su
pp

or
t

Values

A
llo

w
ed

Su
pp

or
te

d

unbindRet-1 performerCredentials F3.3 M
unbindRet-2 invokeId F3.3 M

unbindRet-3 result F3.3 M AV8

AV8 The value of the parameter unbindRet-3 of the UNBIND return PDU shall always

be set to the value ‘positive’: ‘notUsed’; that is, the result is always positive and not
extended.

All parameters of the UNBIND return PDU are contained in the complex parameter of the
type StandardReturnHeader that is specified in F3.3.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page A-11 February 2021

Table A-12: EXECUTE-DIRECTIVE Invocation Parameters

Parameters of the ExecuteDirectiveInvocation PDU

Item Parameter Ref.

St
at

us

Su
pp

or
t

Values

A
llo

w
ed

Su
pp

or
te

d

execDirInv-1 invokerCredentials F3.3 M

execDirInv-2 invokeId F3.3 M

execDirInv-3 procedureName F3.3 M AV9

execDirInv-4 directiveIdentifier F3.4 M AV10

execDirInv-5 localProcDirQualifier F3.4 C12 AV11

execDirInv-6 targetprocedureName F3.4 C13

execDirInv-7 serviceProcDirQualifierValues F3.4 C13 AV12

execDirInv-8 functionalResourceInstanceNu
mber

F3.4 C14

execDirInv-9 functionalResourceQualifiers F3.4 C14 AV13

execDirInv-10 directiveQualifierExtension F3.4 C15 AV14

execDirInv-11 executeDirectiveInvocationExt
ension

F3.4 M AV15

C12 IF execDirInv-4 is set to the Published Identifier of a directive that is registered

under the procedure type that shall perform the EXECUTE-DIRECTIVE operation,
THEN M ELSE X

C13 IF execDirInv-4 is set to the Published Identifier of a directive that is registered
under a procedure type that is associated with the type of service invoking the
EXECUTE-DIRECTIVE operation, but different from the procedure type that shall
perform the EXECUTE-DIRECTIVE operation, THEN M ELSE X

C14 IF execDirInv-4 is set to the Published Identifier of a directive that is registered
under a Functional Resource Type, THEN M ELSE X

C15 IF NOT (C12 OR C13 OR C14), THEN M ELSE X

AV9 The value of the procedureRole element of the parameter execDirInv-3 is

constrained to one of the two values ‘prime procedure’ or ‘secondary procedure’.

AV10 The Published Identifier specified in the execDirInv-4 parameter must identify a
registered directive.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page A-12 February 2021

AV11 The parameter execDirInv-5 will be one of the following: (a) ‘directiveQualifier’:
‘localProcDirQualifier’: ‘DirectiveQualifierValues’: ‘sequenceOfParamIdsAndValues’, (b)
‘directiveQualifier’: ‘localProcDirQualifier’: ‘DirectiveQualifierValues’:
‘parameterlessValues’, or (c) ‘directiveQualifier’: ‘localProcDirQualifier’:
‘DirectiveQualifierValues’: ‘noQualifierValues’.

AV12 The parameter execDirInv-7 will be one of the following: (a) ‘directiveQualifier’:
‘serviceProcDirQualifier’: ‘serviceProcDirQualifierValues’: ‘DirectiveQualifierValues’:
‘sequenceOfParamIdsAndValues’, (b) ‘directiveQualifier’: ‘serviceProcDirQualifier’:
‘serviceProcDirQualifierValues’: ‘DirectiveQualifierValues’: ‘parameterlessValues’, or (c)
‘directiveQualifier’: ‘serviceProcDirQualifier’: ‘serviceProcDirQualifierValues’:
‘DirectiveQualifierValues’: ‘noQualifierValues’.

AV13 The parameter execDirInv-9 will be one of the following: (a) ‘directiveQualifier’:
‘functResourceDirQualifier’: ‘functionalResourceQualifiers’: ‘DirectiveQualifierValues’:
‘sequenceOfParamIdsAndValues’, (b) ‘directiveQualifier’: ‘functResourceDirQualifier’:
‘functionalResourceQualifiers’: ‘DirectiveQualifierValues’: ‘parameterlessValues’, or (c)
‘directiveQualifier’: ‘functResourceDirQualifier’: ‘functionalResourceQualifiers’:
‘DirectiveQualifierValues’: ‘noQualifierValues’.

AV14 The directive qualifier can be defined by the extension ‘directiveQualifier’:
‘directiveQualifierExtension’, but no such extension is specified in this
Recommended Standard. Except if a procedure using this PDU defines such
extension, this parameter must be absent.

AV15 If parameters need to be added to the EXECUTE-DIRECTIVE invocation PDU, the
parameter execDirInv-11 can be used to do so, but no such extension is defined in
this Recommended Standard. Except if the procedure using this PDU specifies such
extension, the value of this parameter shall be set to ‘notUsed’.

The parameters execDirInv-1, execDirInv-2, and execDirInv-3 are contained in the complex
parameter standardInvocationHeader in the ExecuteDirectiveInvocation type
shown in F3.4. This parameter is of the type StandardInvocationHeader that is
specified in F3.3.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page A-13 February 2021

Table A-13: EXECUTE-DIRECTIVE Acknowledgement Parameters

Parameters of the ExecuteDirectiveAcknowledge PDU

Item Parameter Ref.

St
at

us

Su
pp

or
t

Values

A
llo

w
ed

Su
pp

or
te

d

execDirAck-1 performerCredentials F3.3 M

execDirAck-2 invokeId F3.3 M

execDirAck-3 result F3.3 M

execDirAck-4 positive F3.3 C16 AV16

execDirAck-5 diagnostic F3.3 C17 AV17

execDirAck-6 negExtension F3.3 C17 AV18

C16 IF execDirAck-3 = ‘positive’, THEN M ELSE X
C17 IF execDirAck-3 = ‘negative’, THEN M ELSE X

AV16 If parameters need to be added to the positive EXECUTE-DIRECTIVE

acknowledgement PDU, the parameter execDirAck-4 can be used to do so, but no such
extension is defined in this Recommended Standard. Except if the procedure using this
PDU specifies such extension, the value of this parameter shall be set to ‘notUsed’.

AV17 For the EXECUTE-DIRECTIVE acknowledgement, the parameter execDirAck-5 is
extended by the type ExecDirNegAckDiagnosticExt defined in F3.4.
Therefore the parameter execDirAck-5 may have (a) any value defined for the
Diagnostic type in F3.3 except ‘diagnosticExtension’; or (b) any value defined by
the extension ‘diagnosticExtension’: ‘execDirAckDiagExt’:
‘ExecDirNegAckDiagnosticExt’ in F3.4 except
‘execDirNegAckDiagnosticExtExtension’. Additional values can be introduced by the
further extension ‘diagnosticExtension’: ‘execDirAckDiagExt’:
‘ExecDirNegAckDiagnosticExt’: ‘execDirNegAckDiagnosticExtExtension’, but no
such extension is defined in this Recommended Standard.

AV18 If parameters need to be added to the negative EXECUTE-DIRECTIVE
acknowledgement PDU, the parameter execDirAck-6 can be used to do so, but no such
extension is defined in this Recommended Standard. Except if a procedure using this
PDU specifies such extension, the value of this parameter shall be set to ‘notUsed’.

All parameters of the EXECUTE-DIRECTIVE acknowledgement PDU are contained the
complex parameter of the type StandardReturnHeader that is specified in F3.3.
Specific extensions are, however, specified in F3.4.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page A-14 February 2021

Table A-14: EXECUTE-DIRECTIVE Return Parameters

Parameters of the ExecuteDirectiveReturn PDU

Item Parameter Ref.

St
at

us

Su
pp

or
t

Values

A
llo

w
ed

Su
pp

or
te

d

execDirRet-1 performerCredentials F3.3 M

execDirRet-2 invokeId F3.3 M

execDirRet-3 result F3.3 M

execDirRet-4 positive F3.3 C18 AV19

execDirRet-5 diagnostic F3.3 C19 AV20

execDirRet-6 negExtension F3.3 C19 AV21

C18 IF execDirRet-3 = ‘positive’ THEN M ELSE X
C19 IF execDirRet-3 = ‘negative’ THEN M ELSE X

AV19 If parameters need to be added to the positive EXECUTE-DIRECTIVE return

PDU, the parameter execDirRet-4 can be used to do so, but no such extension is
defined in this Recommended Standard. Except if the procedure using this PDU
specifies such extension, the value of this parameter shall be set to ‘notUsed’.

AV20 For the negative EXECUTE-DIRECTIVE return PDU, the parameter execDirRet-5 is
extended by the type ExecDirNegReturnDiagnosticExt defined in F3.4.
Therefore the parameter execDirRet-5 may have (a) any standard value defined for
the Diagnostic type in F3.3 except ‘diagnosticExtension’; or (b) any value
defined by the extension ‘diagnosticExtension’: ‘execDirNegReturnDiagnosticExt’:
‘ExecDirNegReturnDiagnosticExt’ defined in F3.4 except
‘execDirNegReturnDiagnosticExtExtension’. Additional values can be introduced
by the further extension ‘diagnosticExtension’: ‘execDirNegReturnDiagnosticExt’:
‘ExecDirNegReturnDiagnosticExt’: ‘execDirNegReturnDiagnosticExtExtension’.
If the EXECUTE-DIRECTIVE return PDU is used by the Throw Event procedure,
that is, the procedureType element of the parameter execDirInv-3 of the associated
EXECUTE-DIRECTIVE invocation has the value ‘throwEvent’, additional values
are introduced by the further extension ‘diagnosticExtension’:
‘execDirNegReturnDiagnosticExt’: ‘ExecDirNegReturnDiagnosticExt’:
‘execDirNegReturnDiagnosticExtExtension’: ‘teExecDirDiagExt’:
‘TeExecDirNegReturnDiagnosticExt’, where the type
TeExecDirNegReturnDiagnosticExt is specified in F3.14. Therefore the

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page A-15 February 2021

parameter execDirRet-5 may have, in this case, (a) any standard value defined for
the Diagnostic type in F3.3 except ‘diagnosticExtension’; or (b) any value
defined by the extension ‘diagnosticExtension’: ‘execDirNegReturnDiagnosticExt’:
‘ExecDirNegReturnDiagnosticExt’ defined in F3.4 except
‘execDirNegReturnDiagnosticExtExtension’; or (c) any value defined by the
extension ‘diagnosticExtension’: ‘execDirNegReturnDiagnosticExt’:
‘ExecDirNegReturnDiagnosticExt’: ‘execDirNegReturnDiagnosticExtExtension’:
‘teExecDirDiagExt’: ‘TeExecDirNegReturnDiagnosticExt’ defined in F3.14 except
‘teExecDirNegReturnDiagnosticExtExtension’. Additional values can be
introduced by the further extension ‘diagnosticExtension’
‘execDirNegReturnDiagnosticExt’: ‘ExecDirNegReturnDiagnosticExt’:
‘execDirNegReturnDiagnosticExtExtension’: ‘teExecDirDiagExt’:
‘TeExecDirNegReturnDiagnosticExt’:
‘teExecDirNegReturnDiagnosticExtExtension’, but no such extension is defined in
this Recommended Standard.

AV21 If parameters need to be added to the negative EXECUTE-DIRECTIVE return
PDU, the parameter execDirRet-6 can be used to do so, but no such extension is
defined in this Recommended Standard. Except if the procedure using this PDU
specifies such extension, the value of this parameter shall be set to ‘notUsed’.

All parameters of the EXECUTE-DIRECTIVE return PDU are contained the complex
parameter of the type StandardReturnHeader that is specified in F3.3. Specific
extensions are, however, specified in F3.4 and F3.14.

Table A-15: GET Invocation Parameters

Parameters of the GetInvocation PDU

Item Parameter Ref.

St
at

us

Su
pp

or
t

Values
A

llo
w

ed

Su
pp

or
te

d

getInv-1 invokerCredentials F3.3 M

getInv-2 invokeId F3.3 M

getInv-3 procedureName F3.3 M AV22

getInv-4 listOfParameters F3.4 M

getInv-5 getInvocationExtension F3.4 M AV23

AV22 The value of the procedureRole element of the parameter getInv-3 is constrained

to one of the two values ‘prime procedure’ or ‘secondary procedure’.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page A-16 February 2021

AV23 If parameters need to be added to the GET invocation PDU, the parameter getInv-
5 can be used to do so, but no such extension is defined in this Recommended
Standard. Except if the procedure using this PDU specifies such extension, the
value of this parameter shall be set to ‘notUsed’.

The parameters getInv-1, getInv-2, and getInv-3 are contained in the complex parameter
standardInvocationHeader in the GetInvocation type shown in F3.4. This parameter is
of the type StandardInvocationHeader that is specified in F3.3.

Table A-16: GET Return Parameters

Parameters of the GetReturn PDU

Item Parameter Ref.

St
at

us

Su
pp

or
t

Values

A
llo

w
ed

Su
pp

or
te

d

getRet-1 performerCredentials F3.3 M

getRet-2 invokeId F3.3 M

getRet-3 result F3.3 M

getRet-4 positive F3.3 C20 AV24

getRet-5 qualifiedParameters F3.4 C20 AV25

getRet-6 getPosReturnExtExtension F3.4 C20 AV26

getRet-7 diagnostic F3.3 C21 AV27

getRet-8 negExtension F3.3 C21 AV28

C20 IF getRet-3 = ‘positive’, THEN M ELSE X
C21 IF getRet-3 = ‘negative’, THEN M ELSE X

AV24 For the positive GET return, the parameter getRet-4 is set to ‘getPosReturnExt’:

‘GetPosReturnExt’ defined in F3.4.

AV25 For the positive GET return, the parameter getRet-5 is specified by ‘qualifiedParameters’:
‘QualifiedParametersSequence’. The type QualifiedParametersSequence
is defined in F3.4.

AV26 If further parameters need to be added to the positive GET return PDU, the
parameter getRet-6 can be used to do so, but no such extension is defined in this
Recommended Standard. Except if the procedure using this PDU specifies such
extension, the value of this parameter shall be set to ‘notUsed’.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page A-17 February 2021

AV27 For the negative GET return, the parameter getRet-7 is extended by the type
GetDiagnosticExt defined in F3.4. Therefore the parameter getRet-7 may
have (a) any standard value defined for the Diagnostic type in F3.3 except
‘diagnosticExtension’, or (b) any value defined by the extension
‘diagnosticExtension’: ‘getDiagnosticExt’: ‘GetDiagnosticExt’ defined in F3.4
except ‘getDiagnosticExtExtension’. Additional values can be introduced by the
further extension ‘diagnosticExtension’: ‘getDiagnosticExt’: ‘GetDiagnosticExt’:
‘getDiagnosticExtExtension’.

AV28 If parameters need to be added to the negative GET return PDU, the parameter
getRet-8 can be used to do so, but no such extension is defined in this
Recommended Standard. Except if the procedure using this PDU specifies such
extension, the value of this parameter shall be set to ‘notUsed’.

All parameters of the GET return PDU are contained the complex parameter of the type
StandardReturnHeader that is specified in F3.3. Specific extensions are, however,
specified in F3.4.

Table A-17: PROCESS-DATA Invocation Parameters

Parameters of the ProcessDataInvocation PDU

Item Parameter Ref.

St
at

us

Su
pp

or
t

Values

A
llo

w
ed

Su
pp

or
te

d

procDataInv-1 invokerCredentials F3.3 M

procDataInv-2 invokeId F3.3 M

procDataInv-3 procedureName F3.3 M AV29

procDataInv-4 dataUnitId F3.4 M

procDataInv-5 data F3.4 M

procDataInv-6 processDataInvocationExtension F3.4 M AV30

procDataInv-7 processCompletionReport F3.8 C22

procDataInv-8 dataProcProcDataInvocExtExtens
ion

F3.8 C22 AV31

procDataInv-9 earliestDataProcessingTime F3.10 C23

procDataInv-10 latestDataProcessingTime F3.10 C23

procDataInv-11 sequContrDataProcProcDataInvo
cExtExtension

F3.10 C23 AV32

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page A-18 February 2021

C22 IF procDataInv-6 = (‘dpProcDataInvocExt’: ‘DataProcProcDataInvocExt’), THEN

M ELSE X
C23 IF procDataInv-8 = (‘scdpProcDataInvocExt’:

‘SequContrDataProcProcDataInvocExt’), THEN M ELSE X

AV29 The value of the procedureRole element of the parameter procDataInv-3 is

constrained to one of the two values ‘prime procedure’ or ‘secondary procedure’.

AV30 If the procedureType element of the parameter procDataInv-3 has the value
‘dataProcessing’, ‘bufferedDataProcessing’, or ‘sequenceControlledDataProcessing’, or if
the procedure using this PDU is derived from one of these three procedure types,
then the parameter procDataInv-6 shall be set to the value ‘dpProcDataInvocExt’:
‘DataProcProcDataInvocExt’. Otherwise, no such extension is specified in this
Recommended Standard, and the value of procDataInv-6 shall be set to ‘notUsed’,
except if the procedure using this PDU is mentioned above. In case of other
procedure types, this parameter shall be set to ‘notUsed’, except if the procedure
using this PDU specifies such extension.

AV31 If further parameters need to be added to the PROCESS-DATA invocation PDU,
the parameter procDataInv-8 can be used to do so. Such extension is defined for the
Sequence-Controlled Data Processing procedure. Except if such extension is
defined by the procedure derived from the Data Processing procedure or the
Buffered Data Processing procedure and using this PDU, the value of this
parameter shall be set to ‘notUsed’. If the PDU is used by the Sequence-Controlled
Data Processing procedure, that is, the procedureType element of the parameter
procDataInv-3 has the value ‘sequenceControlledDataProcessing’, then the
parameter procDataInv-8 shall be set to ‘scdpProcDataInvocExt’:
‘SequContrDataProcProcDataInvocExt’.

AV32 If parameters need to be added to the PROCESS-DATA invocation PDU used by the
Sequence-Controlled Data Processing procedure, that is, the procedureType element
of the parameter procDataInv-3 has the value ‘sequenceControlledDataProcessing’,
the parameter procDataInv-11 can be used to do so, but no such extension is
defined in this Recommended Standard. Except if the procedure derived from the
parent Sequence-Controlled Data Processing procedure and using this PDU
specifies such extension, this parameter shall be set to ‘notUsed’.

The parameters procDataInv-1, procDataInv-2, and procDataInv-3 are contained in the
complex parameter standardInvocationHeader in the ProcessDataInvocation type
shown in F3.4. This parameter is of the type StandardInvocationHeader that is
specified in F3.3.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page A-19 February 2021

Table A-18: PROCESS-DATA Return Parameters

Parameters of the ProcessDataReturn PDU

Item Parameter Ref.

St
at

us

Su
pp

or
t

Values

A
llo

w
ed

Su
pp

or
te

d

procDataRet-1 performerCredentials F3.3 M

procDataRet-2 invokeId F3.3 M

procDataRet-3 result F3.3 M

procDataRet-4 positive F3.3 C24 AV33

procDataRet-5 dataUnitIdPosRtn F3.10 C25

procDataRet-6 sequContrDataProcProcData
PosReturnExtExtension

F3.10 C25 AV34

procDataRet-7 diagnostic F3.3 C26 AV35

procDataRet-8 negExtension F3.3 C26 AV36

procDataRet-9 dataUnitIdNegRtn F3.10 C27

procDataRet-10 sequContrDataProcProcData
NegReturnExtExtension

F3.10 C27 AV37

C24 IF procDataRet-3 = ‘positive’, THEN M ELSE X
C25 IF procDataRet-3 = ‘positive’ AND procDataRet-4 = ‘scdpProcDataPosReturnExt’:

‘SequContrDataProcProcDataPosReturnExt’, THEN M ELSE X
C26 IF procDataRet-3 = ‘negative’, THEN M ELSE X
C27 IF procDataRet-3 = ‘negative’ AND procDataRet-8 =

‘scdpProcDataNegReturnExt’: ‘SequContrDataProcProcDataNegReturnExt’, THEN
M ELSE X

AV33 If parameters need to be added to the positive PROCESS-DATA return PDU, the

parameter procDataRet-4 can be used to do so. Such extension is defined for the
Sequence-Controlled Data Processing procedure. If this PDU is used by the
Sequence-Controlled Data Processing procedure, that is, the procedureType element
of parameter procDataInv-3 in the associated invocation has the value
‘sequenceControlledDataProcessing’, then the parameter procDataRet-4 shall be set
to ‘scdpProcDataPosReturnExt’: ‘SequContrDataProcProcDataPosReturnExt’. If the
procedure using this PDU does not specify such extension, the value of the parameter
procDataRet-4 shall be set to ‘notUsed’.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page A-20 February 2021

AV34 If further parameters need to be added to the positive PROCESS-DATA return
PDU, the parameter procDataRet-6 can be used to do so, but this Recommended
Standard does not specify such extension. Except if a procedure derived from the
parent Sequence-Controlled Data Processing procedure and using this PDU
specifies such extension, the value of this parameter shall be set to ‘notUsed’.

AV35 For the PROCESS-DATA return, the parameter procDataRet-7 is extended by the
type SequContrDataProcProcDataDiagnosticExt defined in F3.10.
Therefore the parameter procDataRet-7 may have (a) any standard value defined
for the Diagnostic type in F3.3 except ‘diagnosticExtension’; or (b) any value
defined by the extension ‘diagnosticExtension’: ‘scdpProcDataDiagExt’:
‘SequContrDataProcProcDataDiagnosticExt’ defined in F3.10 except
‘sequContrDataProcProcDataDiagnosticExtExtension’. Additional values can be
introduced by the further extension ‘diagnosticExtension’: ‘scdpProcDataDiagExt’:
‘SequContrDataProcProcDataDiagnosticExt’:
‘sequContrDataProcProcDataDiagnosticExtExtension’, but no such extension is
specified in this Recommended Standard.

AV36 If parameters need to be added to the negative PROCESS-DATA return PDU, the
parameter procDataRet-8 can be used to do so. Such extension is defined for the
Sequence-Controlled Data Processing procedure. If this PDU is used by the
Sequence-Controlled Data Processing procedure, that is, the procedureType element
of the parameter procDataInv-3 in the associated invocation has the value
‘sequenceControlledDataProcessing’, then the parameter procDataRet-8 shall be set
to ‘scdpProcDataNegReturnExt’: ‘SequContrDataProcProcDataNegReturnExt’. The
type SequContrDataProcProcDataNegReturnExt is defined in F3.10. Except if such
extension is defined by a procedure using this PDU, the value of this parameter shall
be set to ‘notUsed’.

AV37 If further parameters need to be added to the negative PROCESS-DATA return
PDU, the parameter procDataRet-10 can be used to do so, but this Recommended
Standard does not specify such extension. Except if a procedure derived from the
parent Sequence-Controlled Data Processing procedure and using this PDU
specifies such extension, the value of this parameter shall be set to ‘notUsed’.

This PDU is valid only in case the PROCESS-DATA operation is used by the Sequence-
Controlled Data Processing procedure; that is, the procedureType element of the parameter
procDataInv-3 of the associated PROCESS-DATA invocation has the value
‘sequenceControlledDataProcessing’. The Data Processing procedure and the Buffered Data
Processing procedure use the unconfirmed variant of the PROCESS-DATA operation.

All parameters of the PROCESS-DATA return PDU are contained the complex parameter of
the type StandardReturnHeader that is specified in F3.3. Specific extensions are,
however, specified in F3.10.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page A-21 February 2021

Table A-19: START Invocation Parameters

Parameters of the StartInvocation PDU

Item Parameter Ref.

St
at

us

Su
pp

or
t

Values

A
llo

w
ed

Su
pp

or
te

d

startInv-1 invokerCredentials F3.3 M

startInv-2 invokeId F3.3 M

startInv-3 procedureName F3.3 M AV38

startInv-4 startInvocationExtension F3.4 M AV39

startInv-5 startGenerationTime F3.7 C28

startInv-6 stopGenerationTime F3.7 C28

startInv-7 buffDataDelStartInvocExtExtension F3.7 C28 AV40

startInv-8 firstDataUnitId F3.10 C29

startInv-9 sequContrDataProcStartInvocExtExt
ension

F3.10 C29 AV41

startInv-10 deliveryCycle F3.12 C30

startInv-11 listOfParameters F3.12 C30

startInv-12 cyclicReportStartInvocExtExtension F3.12 C30 AV42

startInv-13 listOfEvents F3.13 C31

startInv-14 notificationStartInvocExtExtension F3.13 C31 AV43

C28 IF startInv-4 = ‘bddStartInvocExt’: ‘BuffDataDelStartInvocExt’, THEN M ELSE X
C29 IF startInv-4 = ‘scdpStartInvocExt’: ‘SequContrDataProcStartInvocExt’, THEN M

ELSE X
C30 IF startInv-4 = ‘crStartInvocExt’: ‘CyclicReportStartInvocExt’, THEN M ELSE X
C31 IF startInv-4 = ‘nStartInvocExt’: ‘NotificationStartInvocExt’ THEN M ELSE X

AV38 The value of the procedureRole element of the parameter startInv-3 is constrained

to one of the two values ‘prime procedure’ or ‘secondary procedure’.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page A-22 February 2021

AV39 If the procedureType element of the parameter startInv-3 has the value
‘bufferedDataDelivery’, then the parameter startInv-4 shall be set to the value
‘bddStartInvocExt’: ‘BuffDataDelStartInvocExt’.
If the procedureType element of the parameter startInv-3 has the value
‘sequenceControlledDataProcessing’, then the parameter startInv-4 shall be set to
the value ‘scdpStartInvocExt’: ‘SequContrDataProcStartInvocExt’.
If the procedureType element of the parameter startInv-3 has the value
‘cyclicReport’, then the parameter startInv-4 shall be set to the value
‘crStartInvocExt’: ‘CyclicReportStartInvocExt’.
If the procedureType element of the parameter startInv-3 has the value
‘notification’, then the parameter startInv-4 shall be set to the value
‘nStartInvocExt’: ‘NotificationStartInvocExt’.
In all other cases in which parameters need to be added to the START invocation
PDU, the parameter startInv-4 can be used to do so, but no such extension is
defined in this Recommended Standard. Therefore this parameter shall be set to the
value ‘notUsed’, except if the procedure using this PDU specifies such extension.

AV40 If parameters need to be added to the START invocation PDU used by a procedure
derived from the parent Buffered Data Delivery procedure, the parameter startInv-7
can be used to do so, but no such extension is defined in this Recommended
Standard. Except if a procedure derived from the parent Buffered Data Delivery
procedure specifies such extension, this parameter shall be set to ‘notUsed’.

AV41 If parameters need to be added to the START invocation PDU used by a procedure
derived from the parent Sequence-Controlled Data Processing procedure, the
parameter startInv-9 can be used to do so, but no such extension is defined in this
Recommended Standard. Except if a procedure derived from the parent Sequence-
Controlled Data Processing procedure specifies such extension, this parameter shall
be set to ‘notUsed’.

AV42 If parameters need to be added to the START invocation PDU used by a procedure
derived from the parent Cyclic Report procedure, the parameter startInv-12 can be
used to do so, but no such extension is defined in this Recommended Standard.
Except if a procedure derived from the parent Cyclic Report procedure specifies
such extension, this parameter shall be set to ‘notUsed’.

AV43 If parameters need to be added to the START invocation PDU used by a procedure
derived from the parent Notification procedure, the parameter startInv-14 can be
used to do so, but no such extension is defined in this Recommended Standard.
Except if the procedure derived from the parent Notification procedure specifies
such extension, this parameter shall be set to ‘notUsed’.

The parameters startInv-1, startInv-2, and startInv-3 are contained in the complex parameter
standardInvocationHeader in the StartInvocation type shown in F3.4. This parameter
is of the type StandardInvocationHeader that is specified in F3.3.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page A-23 February 2021

Table A-20: START Return Parameters

Parameters of the StartReturn PDU

Item Parameter Ref.

St
at

us

Su
pp

or
t

Values

A
llo

w
ed

Su
pp

or
te

d

startRet-1 performerCredentials F3.3 M

startRet-2 invokeId F3.3 M

startRet-3 result F3.3 M

startRet-4 positive F3.3 C32 AV44

startRet-5 diagnostic F3.3 C33 AV45

startRet-6 negExtension F3.3 C33 AV46

C32 IF startRet-3 = ‘positive’, THEN M ELSE X
C33 IF startRet-3 = ‘negative’, THEN M ELSE X

AV44 If parameters need to be added to the positive START return PDU, the parameter

startRet-4 can be used to do so, but no such extension is defined in this
Recommended Standard. Except if the procedure using this PDU specifies such
extension, the value of this parameter shall be set to ‘notUsed’.

AV45 For the START return PDU, the parameter startRet-5 is extended by the type
StartDiagnosticExt defined in F3.4. Therefore the parameter startRet-5 may
have (a) any standard value defined for the Diagnostic type in F3.3 except
‘diagnosticExtension’; or (b) any value defined by the extension
‘diagnosticExtension’: ‘startDiagnosticExt’: ‘StartDiagnosticExt’ in F3.4 except
‘startDiagnosticExtExtension’.
If the procedureType element of the parameter startInv-3 of the associated START
invocation has the value ‘bufferedDataDelivery’, then parameter startRet-5 is further
extended by the type BuffDataDelStartDiagnosticExt defined in F3.7.
Therefore the parameter startRet-5 may have in this case (a) any standard value
defined for the Diagnostic type in F3.3 except ‘diagnosticExtension’; or (b) any
value defined by the extension ‘diagnosticExtension’: ‘startDiagnosticExt’:
‘StartDiagnosticExt’ in F3.4 except ‘startDiagnosticExtExtension’; or (c) any value
defined by the extension ‘diagnosticExtension’: ‘startDiagnosticExt’:
‘StartDiagnosticExt’: ‘startDiagnosticExtExtension’: bddStartDiagExt’:
‘BuffDataDelStartDiagnosticExt’ except ‘buffDataDelStartDiagnosticExtExtension’.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page A-24 February 2021

Additional values can be introduced by the further extension ‘diagnosticExtension’:
‘startDiagnosticExt’: ‘StartDiagnosticExt’: ‘startDiagnosticExtExtension’:
bddStartDiagExt’: ‘BuffDataDelStartDiagnosticExt’:
‘buffDataDelStartDiagnosticExtExtension’, but no such extension is specified in this
Recommended Standard.
If the procedureType element of the parameter startInv-3 of the associated START
invocation has the value ‘cyclicReport’, then parameter startRet-5 is extended by
the type CyclicReportStartDiagnosticExt defined in F3.12. Therefore
the parameter startRet-5 may have in this case (a) any standard value defined for
the Diagnostic type in F3.3 except ‘diagnosticExtension’; (b) any value defined
by the extension ‘diagnosticExtension’: ‘startDiagnosticExt’: ‘StartDiagnosticExt’
in F3.4 except ‘startDiagnosticExtExtension’; or (c) any value defined by the
extension ‘diagnosticExtension’: ‘startDiagnosticExt’: ‘StartDiagnosticExt’:
‘startDiagnosticExtExtension’: crStartDiagExt’: ‘CyclicReportStartDiagnosticExt’
defined in F3.12 except ‘cyclicReportStartDiagnosticExtExtension’. Additional
values can be introduced by the further extension ‘diagnosticExtension’:
‘startDiagnosticExt’: ‘StartDiagnosticExt’: ‘startDiagnosticExtExtension’:
crStartDiagExt’: ‘CyclicReportStartDiagnosticExt’:
‘cyclicReportStartDiagnosticExtExtension’, but no such extension is specified in
this Recommended Standard.
If the procedureType element of the parameter startInv-3 of the associated START
invocation has the value ‘notification’, then the parameter startRet-5 is extended by the
type NotificationStartDiagnosticExt defined in F3.13. Therefore the
parameter startRet-5 may have in this case (a) any standard value defined for the
Diagnostic type in F3.3 except ‘diagnosticExtension’; (b) any value defined by
the extension ‘diagnosticExtension’: ‘startDiagnosticExt’: ‘StartDiagnosticExt’ in
F3.4 except ‘startDiagnosticExtExtension’; or (c) any value defined by the
extension ‘diagnosticExtension’: ‘startDiagnosticExt’: ‘StartDiagnosticExt’:
‘startDiagnosticExtExtension’: ‘nStartDiagExt’: ‘NotificationStartDiagnosticExt’
defined in F3.13 except ‘notificationStartDiagnosticExtExtension’. Additional
values can be introduced by the further extension ‘diagnosticExtension’:
‘startDiagnosticExt’: ‘StartDiagnosticExt’: ‘startDiagnosticExtExtension’:
‘nStartDiagExt’: ‘NotificationStartDiagnosticExt’:
‘notificationStartDiagnosticExtExtension’, but no such extension is specified in this
Recommended Standard.

AV46 If parameters need to be added to the negative START return PDU, the parameter
startRet-6 can be used to do so, but no such extension is defined in this
Recommended Standard. Except if the procedure using this PDU specifies such
extension, the value of this parameter shall be set to ‘notUsed’.

The parameters startRet-1, startRet-2, and startRet-3 of the START return PDU are contained
in the complex parameter of the type StandardReturnHeader that is specified in F3.3.
Specific extensions are, however, specified in F3.4, F3.7, F3.12, and F3.13.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page A-25 February 2021

Table A-21: STOP Invocation Parameters

Parameters of the StopInvocation PDU

Item Parameter Ref.

St
at

us

Su
pp

or
t

Values

A
llo

w
ed

Su
pp

or
te

d

stopInv-1 invokerCredentials F3.3 M

stopInv-2 invokeId F3.3 M

stopInv-3 procedureName F3.3 M AV47

stopInv-4 stopInvocationExtension F3.4 M AV48

AV47 The value of the procedureRole element of the parameter stopInv-3 is constrained

to one of the two values ‘prime procedure’ or ‘secondary procedure’.

AV48 If parameters need to be added to the STOP invocation PDU, the parameter
stopInv-4 can be used to do so, but no such extension is defined in this
Recommended Standard. Except if the procedure using this PDU specifies such
extension, the value of this parameter shall be set to ‘notUsed’.

The parameters stopInv-1, stopInv-2, and stopInv-3 are contained in the complex parameter
standardInvocationHeader in the StopInvocation type shown in F3.4. This parameter is
of the type StandardInvocationHeader that is specified in F3.3.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page A-26 February 2021

Table A-22: STOP Return Parameters

Parameters of the StopReturn PDU

Item Parameter Ref.

St
at

us

Su
pp

or
t

Values

A
llo

w
ed

Su
pp

or
te

d

stopRet-1 performerCredentials F3.3 M

stopRet-2 invokeId F3.3 M

stopRet-3 result F3.3 M

stopRet-4 positive F3.3 C34 AV49

stopRet-5 diagnostic F3.3 C35 AV50

stopRet-6 negExtension F3.3 C35 AV51

C34 IF stopRet-3 = ‘positive’, THEN M ELSE X
C35 IF stopRet-3 = ‘negative’, THEN M ELSE X

AV49 If parameters need to be added to the positive STOP return PDU, the parameter

stopRet-4 can be used to do so, but no such extension is defined in this
Recommended Standard. Except if the procedure using this PDU specifies such
extension, the value of this parameter shall be set to ‘notUsed’.

AV50 The parameter stopRet-5 may have any standard value defined for the
Diagnostic type in F3.3 except ‘diagnosticExtension’. Additional values can be
introduced by the extension ‘diagnosticExtension’, but no such extension is
specified in this Recommended Standard.

AV51 If parameters need to be added to the negative STOP return PDU, the parameter
stopRet-6 can be used to do so, but no such extension is defined in this
Recommended Standard. Except if the procedure using this PDU specifies such
extension, the value of this parameter shall be set to ‘notUsed’.

All parameters of the STOP return PDU are contained the complex parameter of the type
StandardReturnHeader that is specified in F3.3.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page A-27 February 2021

Table A-23: NOTIFY Invocation Parameters

Parameters of the NotifyInvocation PDU

Item Parameter Ref.

St
at

us

Su
pp

or
t

Values

A
llo

w
ed

Su
pp

or
te

d

notifyInv-1 invokerCredentials F3.3 M
notifyInv-2 invokeId F3.3 M

notifyInv-3 procedureName F3.3 M AV52

notifyInv-4 eventTime F3.4 M

notifyInv-5 eventName F3.4 M

notifyInv-6 eventValue F3.4 M AV53

notifyInv-7 notifyInvocationExtension F3.4 M AV54

notifyInv-8 dataUnitIdLastProcessed F3.8 C36

notifyInv-9 dataProcessingStatus F3.8 C37 AV55

notifyInv-10 dataProcessingStartTime F3.8 C37

notifyInv-11 dataUnitIdLastOk F3.8 C36

notifyInv-12 dataProcessingStopTime F3.8 C38

notifyInv-13 productionStatus F3.8 C36 AV56

notifyInv-14 dataProcNotifyInvocExtExtension F3.8 C36 AV57

C36 IF notifyInv-7 = ‘dpNotifyInvocExt’: ‘DataProcNotifyInvocExt’, THEN M ELSE X
C37 IF (notifyInv-7 = ‘dpNotifyInvocExt’: ‘DataProcNotifyInvocExt’) AND (notifyInv-

8 is NOT ‘noDataProcessed’), THEN M ELSE X
C38 IF (notifyInv-7 = ‘dpNotifyInvocExt’: ‘DataProcNotifyInvocExt’) AND (notifyInv-

11 is NOT ‘noSuccessfulProcessing’), THEN M ELSE X

AV52 The value of the procedureRole element of the notifyInv-3 parameter is constrained

to one of the two values ‘prime procedure’ or ‘secondary procedure’.

AV53 The value of the notifyInv-6 parameter can be one of the following: a value that can
be expressed using the type SequenceOfQualifiedValue defined in F3.3,
‘empty’, or a value that can be defined by means of the extension
‘eventValueExtension’ (see EventValue defined in F3.3), but no such extension is
specified in this Recommended Standard. Except if a procedure using this PDU
specifies such extension, the value of ‘eventValue’ must not be set to
‘eventValueExtension’.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page A-28 February 2021

AV54 If the procedureType element of the parameter notifyInv-3 has the value
‘dataProcessing’, ‘bufferedDataProcessing’, or ‘sequenceControlledDataProcessing’,
or a value associated with a procedure derived from the Data Processing procedure,
the Buffered Data Processing procedure, or the Sequence-Controlled Data Processing
procedure, then the parameter notifyInv-7 shall be set to the value
‘dpNotifyInvocExt’: ‘DataProcNotifyInvocExt’.
In all other cases, if parameters need to be added to the NOTIFY invocation PDU,
the parameter notifyInv-7 can be used to do so, but no such extension is defined in
this Recommended Standard. Except if the procedure using this PDU specifies such
extension, this parameter shall be set to ‘notUsed’.

AV55 If the procedureType element of the parameter notifyInv-3 has the value
‘sequenceControlledFrameDataProcessing’, the parameter notifyInv-9 can take on
(a) any value specified for the dataProcessingStatus element of the
DataProcNotifyInvocExt type defined in F3.8 except
‘dataProcessingStatusExtension’, or (b) any value specified by the
SequContrDataProcStatus type defined in F3.8 except
‘sequContrDataProcStatusExtension’.
If the procedureType element of the parameter notifyInv-3 has the value
‘bufferedFrameDataProcessing’, the parameter notifyInv-9 can take on any value
specified for the dataProcessingStatus element of the
DataProcNotifyInvocExt type defined in F3.8 except
‘dataProcessingStatusExtension’.

AV56 If the parameter notifyInv-5 has the value ‘productionStatusChange’, the parameter
notifyInv-13 shall be set to ‘productionStatusChange’: ‘NULL’; that is, it is absent.
For all other values of the parameter notifyInv-5, it shall be set to ‘anyOtherEvent’:
‘ProductionStatus’.

AV57 If parameters need to be added to the NOTIFY invocation PDU used by a
procedure derived from the Data Processing procedure, the Buffered Data
Processing procedure, or the Sequence-Controlled Data Processing procedure, then
the parameter notifyInv-14 can be used to do so, but no such extension is defined in
this Recommended Standard. Except if the procedure using this PDU specifies such
extension, the value of this parameter shall be set to ‘notUsed’.

The parameters notifyInv-1, notifyInv-2, and notifyInv-3 are contained in the complex
parameter standardInvocationHeader in the NotifyInvocation type shown in F3.4. This
parameter is of the type StandardInvocationHeader that is specified in F3.3.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page A-29 February 2021

Table A-24: TRANSFER-DATA Invocation Parameters

Parameters of the TransferDataInvocation PDU

Item Parameter Ref.

St
at

us

Su
pp

or
t

Values

A
llo

w
ed

Su
pp

or
te

d

transferDataInv-1 invokerCredentials F3.3 M
transferDataInv-2 invokeId F3.3 M

transferDataInv-3 procedureName F3.3 M AV58

transferDataInv-4 generationTime F3.4 M

transferDataInv-5 sequenceCounter F3.4 M

transferDataInv-6 data F3.4 M AV59

transferDataInv-7 qualifiedParameters F3.12 C39

transferDataInv-8 cyclicReportTransferDataIn
vocDataRefExtension

F3.12 C39 AV60

transferDataInv-9 transferDataInvocationExte
nsion

F3.4 M AV61

C39 IF transferDataInv-6 = ‘extendedData’: ‘crTransferDataInvocDataRef’:

‘CyclicReportTransferDataInvocDataRef’, THEN M ELSE X

AV58 The value of the procedureRole element of the parameter transferDataInv-3 is

constrained to one of the two values ‘prime procedure’ or ‘secondary procedure’.

AV59 If the procedureType element of the parameter transferDataInv-3 is ‘cyclicReport’,
then the parameter transferDataInv-6 shall be set to the value ‘extendedData’:
‘crTransferDataInvocDataRef’: ‘CyclicReportTransferDataInvocDataRef’. The type
CyclicReportTransferDataInvocDataRef is defined in F3.12.
In all other cases a type different from OCTET STRING is needed for the data to
be transferred by means of the TRANSFER-DATA invocation PDU, the parameter
transferDataInv-6 can be used to specify such a type by means of the extension
‘extendedData’, but except for the Cyclic Report procedure, no such extension is
defined in this Recommended Standard. Except if the procedure using this PDU
specifies such extension, this parameter shall be set to ‘opaqueString’: ‘OCTET
STRING’.

AV60 If parameters need to be added to the TRANSFER-DATA invocation PDU used by
a procedure derived from the parent Cyclic Report procedure, then the parameter
transferDataInv-8 can be used to do so, but no such extension is defined in this
Recommended Standard. Except if a procedure derived from the parent Cyclic

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page A-30 February 2021

Report procedure and using this PDU specifies such extension, the value of this
parameter shall be set to ‘notUsed’.

AV61 If parameters need to be added to the TRANSFER-DATA invocation PDU, the
parameter transferDataInv-9 can be used to do so, but no such extension is defined
in this Recommended Standard. Except if the procedure using this PDU specifies
such extension, the value of this parameter shall be set to ‘notUsed’.

The parameters transferDataInv-1, transferDataInv-2, and transferDataInv-3 are contained in
the complex parameter standardInvocationHeader in the TransferDataInvocation
type shown in F3.4. This parameter is of the type StandardInvocationHeader that is
specified in F3.3.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page B-1 February 2021

ANNEX B

PRODUCTION STATUS AND CONFIGURATION

(NORMATIVE)

B1 PRODUCTION STATUS OVERVIEW

This annex defines the states and transitions of the production-status parameter and
presents in tabular form the effect of the production-status parameter value on the
processing of data and operations. The transitions that may occur are illustrated in figure B-1.

This annex also defines how a CSTS determines the configuration of the underlying
production and notifies changes in that underlying production configuration.

B2 PRODUCTION STATUS SPECIFICATIONS

B2.1 OVERVIEW

Figure B-1 Illustrates the four values of the production status of a CSTS and the transitions
that may occur among them.

Halted

Interrupted

Operational

Configured

Management
Action

Management
Action

Management
Action

Maintenance
Action

Production
Fault

Internal
Event

Figure B-1: Production Status Diagram

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page B-2 February 2021

If absolutely necessary for a service type, refinement of the production-status parameter
and the introduction of substates is permissible (see 2.2.2.2). In that case the CSTS specification
needs to provide the equivalent information of this annex for the service-type-specific
production-status parameter. Furthermore, for all procedures that in their parent version
deal with the standard production-status parameter, derived procedures need to be
specified capable of handling the service-type-specific non-standard production-status parameter.

The type of the standard production-status parameter is
ProdStat ::= ENUMERATED
{
 configured (0)
, operational (1)
, interrupted (2)
, halted (3)
}

B2.2 REQUIREMENTS

B2.2.1 The production-status values shall be set in accordance with the high-level
semantic definition listed in table B-1.

B2.2.2 The values used to indicate the production-status values shall be those of
the type ProdStat as specified in the SANA registry located at
https://sanaregistry.org/r/functional_resources.

B2.2.3 The Published Identifier for the production-status parameter for a CSTS
instance is the OID of the xxxProdstat parameter of the Functional Resource
representing that CSTS instance where ‘xxx’ is the abbreviated name of the CSTS type.

B2.2.4 A CSTS instance shall change the production-status value in accordance
with the conditions specified in table B-2. Such change of the production-status
value shall constitute the procedure state table incoming events ‘production status change’,
and, depending on the actual transition, ‘production status change to ‘operational’’,
‘production status change to ‘interrupted’’, ‘production status change to ‘halted’’, and
‘production status change to ‘configured’’, respectively.

https://sanaregistry.org/r/functional_resources/

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page B-3 February 2021

Table B-1: Production Status Semantic

Production
Status Value Semantic Definition

‘configured’ The configuration of the service production process has
been completed.

‘operational’ The service production process is ready to process data.

‘interrupted’ The service production process has stopped because of
an error condition that may be temporary.

‘halted’ The service production process has been stopped by
management action.

B2.2.5 The event reporting the change of the production status shall be named using the
Functional Resource Instance representing the CSTS instance reporting the ‘production
status change’ event (see 3.11.2.2.3).

NOTES

1 The production status is always a property of the CSTS instance itself and not of the
associated production process. The CSTS may specify how the aggregate production
status shall be derived, for instance, from the resource status and resource
configuration change event reported by the Functional Resources representing the
production process.

2 The production status always refers to the current status of the CSTS. Therefore in case
a CSTS is used to retrieve data that have been collected using a production process that
completed before the CSTS was instantiated, any issues related to the production
process that collected the data now being retrieved by the CSTS are not visible from the
CSTS production status. However, the CSTS may specify means different from the
production status for reporting events that affected the data collection.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page B-4 February 2021

Table B-2: Production Status Transitions

Start
Status

End
Status Cause of Status Change

‘configured’ ‘operational’
Management action to make the production status
‘operational’; this typically includes ensuring the
availability of the service provider services.

‘operational’ ‘interrupted’ Occurrence of a production fault detected by the
service provider.

‘interrupted’ ‘operational’

Maintenance action typically is required to correct
the production fault (e.g., re-configuration to use a
backup service production). The production status
changes to ‘operational’ when the service provider
detects that the fault is corrected.

[any] ‘halted’
Direct management action is required, such as
an operator directive causing the service
provider to halt production.

‘halted’ ‘configured’

Direct management action is required, such as
an operator directive restoring the required
configuration and declaring the production status
to be ‘configured’.

B2.2.6 The transition to the production status ‘operational’ shall only be notified by a
CSTS instance if a different production status value has been notified before and the
transition to production status ‘operational’ has not yet been notified since the most recent
successful BIND operation.

B2.2.7 If not stated differently in the specification of the CSTS, the transition to the
production status ‘interrupted’ shall only be notified by a CSTS instance if it is presently
affected by the possibly transient production fault.

NOTE – When the production status is ‘halted’, the BIND operation shall be rejected (see
3.4.2.3.1). The effects of the production status parameter value on the operations
other than the BIND are addressed by the procedures using the operation
whenever needed.

B3 PRODUCTION CONFIGURATION

B3.1 OVERVIEW

Each CSTS specification defines how the Functional Resource Instances directly associated
with the service production of an instance of that CSTS type are determined, and which set of
parameters of those Functional Resource Instances form the production configuration. The
change of value of any parameter in the production configuration constitutes a ‘production
configuration change’ event for that CSTS instance.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page B-5 February 2021

B3.2 REQUIREMENT

The event reporting the change of the production configuration shall be named using the
Functional Resource Instance representing the CSTS instance reporting the ‘production
configuration change’ event (see 3.11.2.2.3).

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page C-1 February 2021

ANNEX C

QUALIFIED PARAMETERS

(NORMATIVE)

C1 OVERVIEW

This annex defines the requirements applicable to named parameters used by the GET
operation (see 3.12), the Information Query procedure (see 4.9), and the Cyclic Report
procedure (see 4.10).

C2 REQUIREMENTS

C2.1 The qualified-parameters parameter shall contain for each parameter
identified in the list-of-parameters the following information:

a) the Parameter Name defined with its Functional Resource Name (see 1.6.1.7.23) or
with its procedure name (see the type FRorProcedureName specified in F3.3) and
its Parameter Identifier (see 1.6.1.7.31);

b) the parameter type (see C2.3);

c) the parameter value(s): a parameter may be expressed as a single value or as multiple
values;

d) the parameter qualifier reporting the validity of the parameter value (see C2.4).

C2.2 The Functional Resource Name (see 1.6.1.7.23) shall be defined by its Functional
Resource Type (see 1.6.1.7.24) and its Functional Resource Instance Number (see 1.6.1.7.22).
The procedure name shall be defined by the procedure type and the procedure role. For
secondary procedures, the procedure role shall specify also the procedure instance number.

C2.3 Any parameter shall be of the EMBEDDED PDV type (see F2.2). The syntax and
therefore the type of a parameter value shall be identified by the Published Identifier
assigned to that parameter.

NOTE – For instance, the data-transfer-mode parameter of the Buffered Data
Processing procedure has the Published Identifier pBDPdataTransferMode,
and the syntax is specified by the type PBDPdataTransferModeType (see
table 4-33 and F3.16).

C2.4 The qualifier of a parameter value shall be one of the following (see
QualifiedValue in F3.3):

a) ‘valid’—the value is valid;

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page C-2 February 2021

b) ‘unavailable’—the service provider cannot provide the value;

c) ‘undefined’—in the current service provider context, the value is undefined;

d) ‘error’—the processing of the service provider resulted in an error.

C2.5 If the value qualifier of a given parameter is ‘unavailable’, ‘undefined’, or ‘error’, the
value of that parameter shall not be returned.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page D-1 February 2021

ANNEX D

OBJECT IDENTIFIERS DEFINITION

(NORMATIVE)

D1 OVERVIEW

This annex defines

a) the OID tree structure that is used (a) by the procedures defined in this Recommended
Standard and (b) for registering Functional Resource Types and their associated
parameters, events, and directives;

NOTE – It is not intended to constrain how the data types of, for example,
parameters, are implemented or encoded. These definitions are suitable
for inclusion in any type of ASN.1 based protocol that implements Cross
Support Services.

b) the procedures to be applied for the management of the OIDs defined in this annex
and for the creation of new OIDs that need to be defined when new services are
specified; and

c) the top-level OIDs themselves.

NOTE – The complete set of OIDs defined by this Recommended Standard is
specified in F3.1 and F3.16. An informative description of the registries
relevant to this Recommended Standard and their management is
provided in H2. An informative presentation of the overall OID tree
structure is provided in annex K.

D2 OBJECT IDENTIFIERS REGISTRATION

D2.1 This document requests the creation of, or uses, registries that will be managed by the
Space Assigned Numbers Authority, applying the registration rules outlined in H2. New
assignments in these registries will be shown at the SANA registry Web site:
http://sanaregistry.org. Therefore, the reader shall look at the SANA Web site for all the
assignments contained in these registries.

D2.2 Already registered OIDs shall be affected neither by any extension of registries as
requested by this Recommended Standard nor by the definition of new CSTSes.

D2.3 Requests to add assignments to the subtrees of the OID Registry that are owned by
the Cross Support Service (CSS) Area beyond those initiated by the CSS Area shall be
submitted to SANA and come from a Member Agency, an Observer Agency, a CCSDS

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page D-2 February 2021

Associate, or an industry partner supported by a Member Agency. The request shall be
related to a cross support activity. After evaluation of the request and approval by the CSS
Area Director (AD), CSS Deputy Area Directory (DAD), or a person duly authorized by the
AD or DAD, a new OID will be allocated and added to the relevant subtree owned by the
CSS Area and added in this way to the existing OID Registry.

D3 TREE STRUCTURE

NOTE – The overall tree structure can be found in annex K.

iso (1)

standard producing
organization (112)

identified
organization (3)

ccsds (4)

css (4)

crossSupport
Resources (2)

space link
extension (3)

csts (1)

framework (1) services (2)

m
od

ul
es

 (1
)

op
er

at
io

ns
 (2

)

pr
oc

ed
ur

es
 (3

)

fw
Pr

oc
ed

ur
es

Fu
nc

tio
na

lit
ie

s (
4)

cr
os

sS
up

po
rt

Fu
nc

tio
na

lit
ie

s (
1)

ag
en

cie
sF

un
ct

io
na

lit
ie

s
(2

)

Figure D-1: CSTS and Cross Support Resources Root Object Identifier Tree

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page D-3 February 2021

D3.1 Under the css node, one OID branch with the top-level node csts shall be allocated for
all CSTS information objects.

D3.2 Under the css node, one OID branch with the top-level node crossSupportResources
shall be allocated for all Cross Support Resources information objects (see D6).

D3.3 The csts OID branch shall be subdivided into the following subbranches:

a) ‘framework’, which lists all OIDs that are reserved for the CSTS Specification
Framework definition;

b) ‘services’, which lists all OIDs that are relevant for CSTSes, each new service having
its own subbranch.

D3.4 The ‘framework’ branch (see D4) shall be divided as follows:

a) The ‘modules’ branch lists the OIDs of the ASN.1 modules defined in this
Recommended Standard.

b) The ‘operations’ branch lists the OIDs applicable to each operation defined in this
Recommended Standard and specifies for each operation the OIDs of the extended
types defined in this Recommended Standard.

c) The ‘procedures’ branch lists the OIDs to be used for each procedure. Each CSTS
Specification Framework procedure may be further detailed with derived procedures
and with parameter extensions of the procedure.

d) The ‘fwProceduresFunctionalities’ branch lists for each procedure defined in this
Recommended Standard in a procedure-specific subbranch the Parameter Identifiers,
the Event Identifiers, and the Directive Identifiers. Under each of the procedure-
specific subbranches of the ‘fwProceduresFunctionalities’ branch, there shall be three
separate subbranches: one for Parameters, one for Events, and one for Directives, as
defined in F3.16.

NOTE – The Parameter Identifiers, Event Identifiers, and Directive Identifiers are
used to construct the Parameter, Event, and Directive Names that are
transferred via various CSTS operations. Annex E specifies the rules for
the construction of names using these identifiers.

D3.5 The ‘services’ branch (see D5) shall contain the service-type OIDs, and for each of
them, it may contain the extended parameters, derived services, newly defined procedures,
and service type specific ASN.1 modules.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page D-4 February 2021

D4 CSTS SPECIFICATION FRAMEWORK OBJECT IDENTIFIERS REGISTRATION

NOTES

1 This section specifies some rules regarding the construction of the strings that are
used to name OIDs. While within this Recommended Standard these rules have been
adhered to, this is not meant to impose the same rules on related documents such as
CSTS specifications. If deemed more convenient, different rules for the construction
of strings naming OIDs may be applied in those documents.

2 To better illustrate how strings used to name OIDs are built, all figures in sections
D4 to D6 contain such strings, but these strings are examples only; that is, they do
not name actually specified OIDs of service types, procedures, parameters, events,
directives, etc. As such, the figures in these sections are informative only.

D4.1 New OIDs in the ‘framework’ branch shall be allocated only in the context of an
update of this Recommended Standard.

D4.2 New OIDs in the ‘modules’ branch shall be allocated only if new ASN.1 modules are
created in this Recommended Standard.

D4.3 New OIDs in the ‘operations’ branch shall be allocated only in the context of a
definition of new operations and additional extensions in the definitions of the operations in
this Recommended Standard.

NOTE – Strictly speaking, not the operations as such but the PDUs associated with a given
operation are registered in the ‘operations’ branch. For example, different OIDs are
assigned to the START invocation and to the START return PDU, respectively.
Likewise, extensions are registered separately for each PDU.

D4.4 New OIDs in the ‘procedures’ branch (see figure D-2) shall be allocated only in the
context of

a) definition of new procedures: in case a new procedure is created in this Recommended
Standard, the newly allocated OID shall be complemented with two subbranches:

1) ‘(procedure classifier)DerivedProcedures’ to register any derivation of a
procedure from this newly registered procedure,

2) ‘(procedure classifier)ExtProcedureParam’ to register operations parameters
extensions; and

b) procedure derived from an existing procedure: the created OID shall be
complemented with two subbranches:

1) ‘(derived procedure classifier)DerivedProcedures’ to register the derivation of a
procedure from the given parent procedure,

2) ‘(derived procedure classifier)ExtProcedureParam’ to register the operations
parameters extension.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page D-5 February 2021

procedures (3)

alphaBravoCharly

alphaBravoCharlyOne

abcDerivedProcedures (1)

abc1DerivedProcedures (1)

abc1NotifyProcStatusExt

abc1StartDiagExt

abc1StartInvocExt

abcProcDataNegReturnExt

abcProcDataInvocExt

abcStopInvocExt

deltaEchoFoxtrott

defNotifyProcStatusExt

defNotifyInvocExt

defDerivedProcedures (1)

abc1ExtProcedureParam (2)

abcExtProcedureParam (2)

defExtProcedureParam (2)

Figure D-2: ‘procedures’ Subtree

D4.5 New OIDs in the ‘proceduresFunctionalities’ branch shall be allocated only in the
context of the definition of a new procedure in this Recommended Standard. The newly

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page D-6 February 2021

allocated OID node name shall be of the form ‘proc(Procedure Long Name)’. Each such OID
shall be complemented with three subbranches (see figure D-3):

a) ‘p(PROCEDURE SHORT NAME)parametersId’ to register the procedure’s
parameters;

b) ‘p(PROCEDURE SHORT NAME)eventsId’ to register the procedure’s events;

c) ‘p(PROCEDURE SHORT NAME)directivesId’ to register the procedure’s directives.

NOTES

1 The <PROCEDURE SHORT NAME> strings used for the procedures contained in
this Recommended Standard are specified in F3.16.

2 The <PROCEDURE SHORT NAME> string is the acronym, that is, the initialism of
the <procedure long name string> and by definition is therefore ALL CAPS.

3 Figure K-4 illustrates the above specified OID tree structure for all procedures
specified within this Recommended Standard.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page D-7 February 2021

fwProceduresFunctionalities (4)

procAlphaBravoCharly

pABCparametersId (1)

pABCbufferSize

procDeltaEchoFoxtrott

pDEFparametersId (1)

pDEFconfigurationChange

pDEFeventsId (2)

pABCconfigurationChange

pABCendOfData

pABCeventsId (2)

pABCdirectivesId (3)

pABCtimerOne

pABCresetCounter

pDEFresetCounter

pDEFdirectivesId (3)

Figure D-3: ‘fwProceduresFunctionalities’ Subtree

D5 SERVICE OBJECT IDENTIFIERS REGISTRATION

D5.1 Whenever a new non-derived service is specified, a new OID shall be allocated
directly under the ‘services’ node. The allocated OID shall be complemented with five
subbranches (see figure D-4):

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page D-8 February 2021

a) ‘(service classifier)DerivedServices’ to register services derived from the specified
service;

b) ‘(service classifier)ExtendedServiceParameters’ to register service type specific
parameters;

c) ‘(service classifier)ServiceProcedures’ to register procedures derived for this service;

d) ‘(service classifier)ServiceModules’ to register service type specific ASN.1 modules;

e) ‘(service classifier)ServiceFrRef’ to register the reference to the Functional Resource
Type that models the given service type.

services (2)

xyzService (a)

xyz1Service (n)

xyzDerivedServices (1)

xyz1ExtendedServiceParameters (2)

xyz1ServiceProcedures (3)

xyz1ServiceModules (4)

xyzExtendedServiceParameters (2)

xyzServiceProcedures (3)

xyzServiceModules (4)

rstService (b)

xyzServiceFrRef (5)

xyz1ServiceFrRef (5)

xyz1DerivedServices (1)

Figure D-4: ‘services’ Subtree

D5.2 For each procedure defined for a given service, four subbranches shall be created
directly under that procedure node as follows (see figure D-5):

a) ‘(service classifier)SP(service procedure classifier)ExtendedOpsParam’ to register
extensions of operation parameters used by this procedure;

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page D-9 February 2021

b) ‘(service classifier)SP(service procedure classifier)ExtendedProcParam’ to register
extensions of procedure specific parameters;

c) ‘(service classifier)SP(service procedure classifier)EventsId’ to register procedure
type specific events;

d) ‘(service classifier)SP(service procedure classifier)DirectivesId’ to register procedure
type specific directives.

xyzService

xyzDerivedServices (1)

xyzExtendedServiceParameters (2)

xyzServiceProcedures (3)

xyzServiceModules (4)

xyzServiceFrRef (5)

xyzSPabc

xyzSPabcExtendedOpsParam (1)

xyzSPabcExtendedProcParam (2)

xyzSPabcEventsId (3)

xyzSPabcDirectivesId (4)

Figure D-5: ‘service procedures’ Subtree

D5.3 Whenever a new service derived from an existing service is specified, a new OID
shall be allocated directly under the service it is derived from (see figure D-4). The allocated
OID shall be complemented with five subbranches:

a) ‘(derived service classifier)DerivedServices’ to register services derived from the
specified service;

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page D-10 February 2021

b) ‘(derived service classifier)ExtendedServiceParameters’ to register parameters
syntax;

c) ‘(derived service classifier)ServiceProcedures’ to register derived procedures and
extended parameters for this service;

d) ‘(derived service classifier)ServiceModules’ to register ASN.1 modules for this service;

e) ‘(derived service classifier)ServiceFrRef’ to register the reference to the Functional
Resource Type that models the given service type.

D6 CROSS SUPPORT RESOURCES OBJECT IDENTIFIERS REGISTRATION

D6.1 GENERAL

The Cross Support Resources branch shall be divided into two branches:
‘crossSupportFunctionalities’ and ‘agenciesFunctionalities’.

D6.2 CROSS SUPPORT FUNCTIONALITIES BRANCH

D6.2.1 Published Identifiers in this branch shall be allocated independently of this
Recommended Standard.

D6.2.2 Published Identifier registration shall ensure registration of parameters, events, and
directives grouped per Functional Resource Type.

D6.2.3 Functional Resource Types, Parameter Identifiers, Event Identifiers, and Directive
Identifiers shall be registered as Published Identifiers (see figure D-6).

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page D-11 February 2021

crossSupportFunctionalities (1)

rst [Functional Resource Type]

parametersId (1)

eventsId (2)

directivesId (3)

uvw [Functional Resource Type]

parametersId (1)

eventsId (2)

directivesId (3)

Figure D-6: ‘crossSupportFunctionalities’ Subtree

D6.2.4 Whenever a new Functional Resource Type is defined,

a) a ‘functionalResourceType’ Published Identifier shall be allocated for that Functional
Resource Type with three subbranches: ‘parametersId’, ‘eventsId’, and ‘directivesId’,
as required in D6.2.3;

b) Functional Resource Type specific parameters (in the ‘parametersId’ branch) shall be
allocated reporting the specific parameters that may be defined for that Functional
Resource Type;

c) Functional Resource Type specific events (in the ‘eventsId’ branch) shall be allocated
corresponding to the specific events that may be defined for that Functional Resource
Type; and

d) Functional Resource Type specific directives (in the ‘directivesId’ branch) shall be
allocated corresponding to the specific directives that may be defined for that
Functional Resource Type.

NOTE – The Parameter Identifiers, Event Identifiers, and Directive Identifiers are
used to construct the Parameter, Event, and Directive Names that are
transferred via various CSTS operations. Annex E specifies the rules for
the construction of names using these identifiers.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page D-12 February 2021

D6.2.5 Whenever a new CSTS is defined, a ‘functionalResourceType’ Published Identifier
shall be allocated for that CSTS with three branches: ‘parametersId’, ‘eventsId’, and
‘directivesId’, as required in D6.2.3, and populated as specified in D6.2.4.

NOTE – The provision of any CSTS is modeled by means of a service type specific
Functional Resource. Therefore the definition of a new CSTS requires also the
specification of the related Functional Resource and consequently the allocation
of an OID to that Functional Resource Type.

D6.2.6 Whenever a new version of a Functional Resource is required, it shall be assigned a
new OID. The old Functional Resource shall remain untouched, but may be deprecated.

D6.2.7 Whenever a new version of a parameter, event, or directive is required, the
following steps shall be performed:

a) the existing parameter/event/directive shall be left untouched;

b) a new parameter/event/directive shall be created the OID of which shall be the same
as the original parameter except that the appended version number shall be
incremented by one;

c) at any point in time, the original parameter may be deprecated.

D6.3 AGENCIES FUNCTIONALITIES

D6.3.1 An Agency may support agency specific Functional Resources that are not covered
under the ‘crossSupportFunctionalities’ branch.

D6.3.2 That Agency may request from SANA a dedicated OID that is allocated to that
Agency and is to be registered under the ‘agenciesFunctionalities’ branch.

D6.3.3 The Agency may then request SANA to register new Functional Resources,
parameters, events, and directives, in line with the structure adopted under the
‘crossSupportFunctionalities’ branch (see figure D-7).

NOTES

1 It is the responsibility of the Agency to allocate and maintain the required Published
Identifiers (Functional Resource Types, parameters, events, and directives).

2 It is the responsibility of the Agency not to duplicate already existing
‘crossSupportFunctionalities’ definitions.

3 The registration rules applying to the ‘agenciesFunctionalities’ subbranch and to the
related registration of Agency-specific Functional Resources are documented in H2.4.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page D-13 February 2021

agenciesFunctionalities (2)

qrs [Functional Resource Type]

parametersId (1)

eventsId (2)

directivesId (3)

tuv [Functional Resource Type]

parametersId (1)

eventsId (2)

directivesId (3)

klm [agency]

hij [agency]

Figure D-7: ‘agenciesFunctionalities’ Subtree

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page E-1 February 2021

ANNEX E

COMPOSITION OF PARAMETER, EVENT, AND DIRECTIVE NAMES
AND PARAMETER AND EVENT LISTS

(NORMATIVE)

E1 OVERVIEW

Naming Functional Resources and the observable parameters, notifiable events, and directives
associated with those Functional Resources is achieved by means of Published Identifiers.
Published Identifiers are OIDs that are registered with the Space Assigned Numbers Authority.
Use of Published Identifiers allows for the specification of CSTSes that can use parameters or
events that have not been identified at the time of the writing of those CSTS specifications.

Those Published Identifiers are used in a variety of ways in the operations and procedures of
the CSTS Specification Framework:

a) to form the Parameter Names used (1) in the list-of-parameters parameter of the
GET operation (3.12.2.2.2) and the Cyclic Report procedure START operation
(4.10.4.1.2.3), and (2) in the qualified-parameters parameter of the GET operation
(3.12.2.2.3) and the Cyclic Report procedure TRANSFER-DATA operation (4.10.4.2.2.2);

b) to form the Event Names used in the event-name parameter of the NOTIFY
operation (3.11.2.2.3.1) and the list-of-events parameter of the Notification
procedure START operation (4.11.4.1.2.2);

c) to form the Parameter Names that might be used in the directive-qualifier
parameter of the EXECUTE-DIRECTIVE operation (3.13.2.2.3);

d) to form the logical records that constitute the named and default parameter lists used
in the list-of-parameters parameters of the GET operation (3.12.2.2.2) and
the Cyclic Report procedure START operation (4.10.4.1.2.3);

e) to form the logical records that constitute the named and default event lists used in the list-
of-events parameter of the Notification procedure START operation (4.11.4.1.2.2);

f) to form the Functional Resource Names used (1) in the list-of-parameters
parameters of the GET operation (3.12.2.2.2) and the Cyclic Report procedure
START operation (4.10.4.1.2.3), and (2) in the list-of-events parameter of the
Notification procedure START operation (4.11.4.1.2.2);

g) to form the procedure name used in the list-of-parameters parameters of the GET
operation (3.12.2.2.2), the Cyclic Report procedure START operation (4.10.4.1.2.3), and the
list-of-events parameter of the Notification procedure START operation (4.11.4.1.2.2).

This annex defines the composition of Functional Resource Names, Parameter Names, Event Names,
Directive Names, Parameter Lists, and Event Lists using Published Identifiers of the appropriate types.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page E-2 February 2021

E2 FUNCTIONAL RESOURCE NAME

E2.1 Each Functional Resource Name shall be composed of a Functional Resource Type
Published Identifier and a Functional Resource Instance Number.

E2.2 The Functional Resource Type shall be registered on one of the following CCSDS
OID subtrees:

a) {ccsds css crossSupportResources crossSupportFunctionalities} for a CCSDS-
standard Functional Resource Type; or

b) {ccsds css crossSupportResources agenciesFunctionalities <Agency X>} for an
Agency-unique Functional Resource Type.

E3 PROCEDURE NAME

E3.1 Each procedure name shall be composed of a Procedure Type Published Identifier
and the procedure role. If the role is ‘association control’ or ‘prime procedure’, no instance
number is defined, as the procedure is already unambiguously identified. If the role is
‘secondary procedure’, an instance number is part of the procedure name.

E3.2 The Procedure Type shall be registered on the CCSDS OID subtree {ccsds css csts
framework procedures}.

E4 PARAMETER NAME

E4.1 A Parameter Name shall be composed of a Parameter Identifier and either the
Functional Resource Name of the Functional Resource Instance that generates the values for
that instance of the parameter or the procedure name of the procedure that generates the
value for that instance of the procedure configuration parameter.

E4.2 If a Functional Resource Name is used to form the Parameter Name, then the
Parameter Identifier shall be registered on one of the following CCSDS OID subtrees:

a) {ccsds css crossSupportResources crossSupportFunctionalities <functional resource
type A> parametersId} for a parameter that is specified as part of a CCSDS-standard
Functional Resource Type definition;

b) {ccsds css crossSupportResources agenciesFunctionalities <Agency X> <functional
resource type A> parametersId} for a parameter that is specified as part of an
Agency-unique Functional Resource Type definition or an Agency-specific extension
of a CCSDS-standard Functional Resource Type.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page E-3 February 2021

NOTE – If an Agency uses the ‘agenciesFunctionalities’ subtree to register additional Agency-
specific parameters for a CCSDS-standard Functional Resource Type, there is not
necessarily any relationship between the integer value of the Functional Resource
Type node under that Agency’s ‘agenciesFunctionalities’ subtree and the value of the
Functional Resource Type node under the ‘crossSupportFunctionalities’ subtree.

E4.3 If a procedure name is used to form the Parameter Name, then the Parameter
Identifier shall be registered on the {ccsds css csts framework fwProceduresFunctionalities
proc<Procedure Long Name> p<PROCEDURE SHORT NAME>parametersId} subtree for a
configuration parameter that is defined for that framework procedure.

NOTE – The <Procedure Long Name> and <PROCEDURE SHORT NAME> strings used
for the procedures contained in this Recommended Standard are formed in
accordance with the rules laid down in D4.5 and specified in F3.16.

E5 EVENT NAME

E5.1 An Event Name shall be composed of an Event Identifier and either the Functional
Resource Name of the Functional Resource Instance that generates the notifications for that
instance of the event or the procedure name of the framework procedure that issues the
notification.

E5.2 If a Functional Resource Name is used to form the Event Name, then the Event
Identifier shall be registered on one of the following CCSDS OID subtrees:

a) {ccsds css crossSupportResources crossSupportFunctionalities <functional resource
type A> eventsId} for an event that is specified as part of a CCSDS-standard
Functional Resource Type definition;

b) {ccsds css crossSupportResources agenciesFunctionalities <Agency X> <functional
resource type A> eventsId} for an event that is specified as part of an Agency-unique
Functional Resource Type definition or an Agency-specific extension of a CCSDS-
standard Functional Resource Type.

NOTE – If an Agency uses the ‘agenciesFunctionalities’ subtree to register additional
Agency-specific events for a CCSDS-standard Functional Resource Type, there
is not necessarily any relationship between the integer value of the Functional
Resource Type node under that Agency’s ‘agenciesFunctionalities’ subtree and
the value of the Functional Resource Type node under the
‘crossSupportFunctionalities’ subtree.

E5.3 If a procedure name is used to form the Event Name, then the Event Identifier shall
be registered on the {ccsds css csts framework fwProceduresFunctionalities proc<Procedure
Long Name> p<PROCEDURE SHORT NAME>eventsId} subtree for a notification that is
defined for a framework procedure.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page E-4 February 2021

NOTE – The <Procedure Long Name> and <PROCEDURE SHORT NAME> strings used
for the procedures contained in this Recommended Standard are formed in
accordance with the rules laid down in D4.5 and specified in F3.16.

E6 DIRECTIVE NAME

E6.1 A Directive Name shall be composed of a Directive Identifier and either the
Functional Resource Name of the Functional Resource Instance that receives that instance of
the directive or the procedure name of the framework procedure that shall be acted on by that
directive.

E6.2 If a Functional Resource is used to form the Directive Name, then the Directive
Identifier shall be registered on one of the following CCSDS OID subtrees:

a) {ccsds css crossSupportResources crossSupportFunctionalities <functional resource
type A> directivesId} for a directive that is specified as part of a CCSDS-standard
Functional Resource Type definition;

b) {ccsds css crossSupportResources agenciesFunctionalities <Agency X> <functional
resource type A> directivesId} for a directive that is specified as part of an Agency-
unique Functional Resource Type definition or an Agency-specific extension of a
CCSDS-standard Functional Resource Type.

NOTE – If an Agency uses the ‘agenciesFunctionalities’ subtree to register additional
Agency-specific directives for a CCSDS-standard Functional Resource Type,
there is not necessarily any relationship between the integer value of the
Functional Resource Type node under that Agency’s ‘agenciesFunctionalities’
subtree and the value of the Functional Resource Type node under the
‘crossSupportFunctionalities’ subtree.

E6.3 If a procedure name is used to form the Directive Name, then the Directive Identifier
shall be registered on the {ccsds css csts framework fwProceduresFunctionalities
proc<Procedure Long Name> p<PROCEDURE SHORT NAME>directivesId} subtree for a
directive that is defined for a framework procedure.

NOTE – The <Procedure Long Name> and <PROCEDURE SHORT NAME> strings used
for the procedures contained in this Recommended Standard are formed in
accordance with the rules laid down in D4.5 and specified in F3.16.

E7 PARAMETER LABEL

A Parameter Label shall be the Published Identifier of that parameter. Given the way that a
Published Identifier is constructed, it identifies the parameter and either the associated
Functional Resource Type or the associated procedure type.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page E-5 February 2021

E8 EVENT LABEL

An Event Label shall be the Published Identifier of that event. Given the way that a
Published Identifier is constructed, it identifies the event and either the associated Functional
Resource Type or the associated procedure type.

E9 PARAMETER LIST

E9.1 A parameter list shall contain a set of one or more Parameter Labels.

E9.2 Each parameter list record shall represent all instances of the parameter type
represented by the Parameter Identifier for all instances of the Functional Resource Type or
procedure type that are associated with the service executing the procedure that uses the
parameter list.

NOTE – For example, assume that one of the Parameter Labels of a parameter list
includes the return-buffer-size Parameter Identifier specified for the
Buffered Data Delivery procedure. If that parameter list is put into the list-
of-parameters parameter of the GET invocation or the Cyclic Report
procedure START invocation, it signifies that the return-buffer-size
parameter value is to be sent for every instance of the Buffered Data Delivery
procedure that is active and executing within the service instance that executes
the Information Query or the Cyclic Report procedure.

E10 EVENT LIST

E10.1 An event list shall logically consist of a set of one or more Event Labels, each of
which is an Event Identifier Published Identifier. Because of the way such a Published
Identifier is constructed, it identifies the event and the associated Functional Resource Type
or procedure type.

E10.2 Each event list record shall represent all instances of the event type represented by
the Event Identifier for all instances of the Functional Resource Type or procedure type that
are associated with the service instance executing the Notification procedure.

NOTE – For example, assume that one of the Event Labels of an event list includes the
configuration-change Event Identifier of the Buffered Data Delivery
procedure. If that event list is put into the list-of-parameters parameter
of the Notification procedure START invocation, it signifies that the
pBDPconfigurationChange notification is to be sent whenever it occurs on
any of the instances of the Buffered Data Delivery procedure type that that are
active and being executed by the service instance that is executing the
Notification procedure.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page E-6 February 2021

E11 PARAMETERS, EVENTS, AND DIRECTIVES DEFINITION

E11.1 A parameter, an event, and a directive shall be defined using the following definition:

a) a classifier, that is, a compact string in ‘camel case’ notation and using standard
abbreviations (e.g., ‘fwd’ for ‘forward’) indicating the purpose of the parameter,
event, or directive;

b) the semantic definition of the parameter in the form of free text;

c) a name in the form of an OID, where the last digit indicates the version of the
definition (see Parameter Name definition in 1.6.1.7.33, Event Name definition in
1.6.1.7.18, and Directive Name definition in 1.6.1.7.15);

d) a syntax specification, preferably expressed in ASN.1, and an OID referencing this
syntax, in which this OID shall be identical with the OID assigned as per c) above;

e) in the case of a parameter, a flag indicating if this parameter can be configured;

f) in the case of a directive acting on one or more parameters flagged as ‘configured’, a
guard condition; if that guard condition does not evaluate to true, the directive must
not be executed on that parameter; that is, the parameter value must not be modified;

g) if applicable and not implied by the data type specification, the range and other
constraints (limits) shall be defined;

h) if applicable, the engineering unit(s), preferably SI units, shall be stated;

i) a flag indicating if the definition has been deprecated or not;

NOTE – The deprecation flag indicates that at least one more-recent version of the
specification of the given parameter, event, or directive exists. The
deprecated version can no longer be expected to be supported by providers
of CSTSes. In case one or more parameters, events, or directives of a
Functional Resource shall no longer be supported at all regardless of their
version, a new Functional Resource Type is to be specified.

j) the authorizing entity (e.g., CSS Area);

k) the creation date.

E11.2 Requests to add assignments to this registry shall be submitted to SANA and come
from a member Agency, an observer Agency, a CCSDS Associate, or an industry partner
supported by a member Agency. The request shall be related to a cross support activity. After
evaluation of the request and approval by the CSS Area chair or deputy or a person duly
authorized by her/him, a new OID will be allocated and added to the existing list.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page F-1 February 2021

ANNEX F

DATA TYPES DEFINITION

(NORMATIVE)

F1 OVERVIEW

F1.1 This annex defines the data types that are used by the procedures defined in this
Recommended Standard. It is intended to provide a clear specification of these data types
and to avoid ambiguity. It is not intended to constrain how these data types are implemented
or encoded. These definitions are suitable for inclusion in any type of ASN.1-based protocol
that implements Cross Support Services.

F1.2 The data type definitions are presented in ASN.1 modules.

F1.3 Conceptually, the CSTS Specification Framework ASN.1 definitions break into three
levels (putting aside, for the moment, the top-level data structure that contains a Framework
PDU). The lowest level consists of data types; these are used as building blocks. The middle
level consists of operation messages (invocations, returns, and acknowledgements); these are
generic definitions that can be extended by procedures. The highest level consists of
procedure-specific information (e.g., extensions of the generic operation messages).

F1.4 The ASN.1 definitions are broken down into modules. A distinction is made between
general purpose items (items used by multiple procedures) and procedure-specific items (items
used by only a single procedure). General purpose building blocks are defined in a single
module called ‘Cross Support Transfer Service – Common Types’ (F3.3). General purpose
operation messages are defined in a single module called ‘Common Operation PDUs’ (F3.4).
For each procedure, there is a dedicated module that contains procedure-specific building blocks
(if any), procedure-specific operation messages (if any), and procedure-specific extensions to the
generic operation messages (if any). Generally, the modules are arranged in bottom-up order:

a) F3.1 – list of OIDs for Framework operations and procedures;

b) F3.2 – building blocks that are used only by the Bind-Invocation message (the
Service-Instance-Id);

c) F3.3 – CSTS common types;

d) F3.4 – common operations PDUs;

e) F3.5 – procedure-specific information for the Association Control procedure;

f) F3.6 through F3.14 – procedure-specific information (each subsection dedicated to
one procedure);

g) F3.15 – the top-level CSTS Specification Framework PDUs;

h) F3.16 – procedure-specific OIDs associated with parameters, events, and directives.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page F-2 February 2021

F1.5 The top-level Framework PDU specifies an operation (e.g., Bind) and a specific
message type within that operation (i.e., invocation, return, or acknowledgement). The
combination is an operation message (e.g., Bind-Invocation). As mentioned above, if the
operation is of a general purpose, its messages will be defined in the ‘Common Operation
PDUs’ subsection (F3.4). Otherwise, the operation’s messages will be defined within one of
the subsections dedicated to specific procedures; for example, the Bind, Unbind, and PEER-
ABORT operations are defined in the subsection dedicated to the Association Control
procedure (F3.5).

F2 EXTENSION

F2.1 The extension capability may or may not be used using the Extended parameter. If
not used, the Extended parameter shall carry a ‘null’ value, also referred to as ‘notUsed’.

F2.2 Extension is defined by means of ‘EMBEDDED PDV’. The ASN.1 EMBEDDED
PDV type is a type used to include non-ASN.1 or other data within an ASN.1 encoded
message. This type is described using the following ASN.1 SEQUENCE:

EMBEDDED PDV ::= [UNIVERSAL 11] SEQUENCE
{ identification CHOICE
 { syntaxes SEQUENCE
 { abstract OBJECT IDENTIFIER
 , transfer OBJECT IDENTIFIER
 }
 , syntax OBJECT IDENTIFIER
 , presentation-context-id INTEGER
 , context-negotiation SEQUENCE
 { presentation-context-id INTEGER
 , transfer-syntax OBJECT IDENTIFIER
 }
 , transfer-syntax OBJECT IDENTIFIER
 , fixed NULL
 }
, data-value OCTET STRING
}

F2.3 The extension shall make use of the ‘syntax’ definition in the ‘identification’
CHOICE. The ‘syntax’ is assigned an OID (see F3.1) that is unique for all extensions and
clearly indicates that all external syntaxes carried by this definition belong to the Cross
Support Services. The effect of this restriction is to make the EMBEDDED PDV type, as it
applies to CSTSes, appear as the following type:

EMBEDDED PDV ::= [UNIVERSAL 11] SEQUENCE
{ identification CHOICE
 { syntax OBJECT IDENTIFIER
 }
, data-value OCTET STRING
}

F2.4 The syntax used for the extension (see F2.2) shall follow the requirements defined in
annex D.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page F-3 February 2021

F2.5 The assignment of the OID that identifies the syntax and the specification of the type
of the data-value shall be placed next to OID assignment of the parameter, event value,
or directive qualifier OID assignment in the same ASN.1 module.

F2.6 The name associated with the OID of a procedure parameter, event, or directive shall
be formed as specified in D4.5.

F2.7 If a derived procedure has inherited events or directives from the parent procedure,
the OIDs identifying these events and event values as well as these directives and directive
qualifiers shall be inherited as well.

F2.8 The name associated with the OID of a Functional Resource parameter, event, or
directive shall be formed as specified in D6.

NOTE – The names associated with the OIDs associated with Functional Resource
parameters, events, or directives are specified in the related SANA registry (see
H2.4).

F2.9 The OID of an event-value shall be formed by appending a digit to the OID of
the associated event; the OID of a directive-qualifier shall be formed by appending a digit to
the OID of the associated directive. In both cases, the appended digit shall start from the
value ‘1’. This OID identifies either the syntax of the complete event-value or
directive-qualifier, or of an individual element of the sequence forming the
event-value or directive-qualifier (see EventValue in F3.3 and
DirectiveQualifierValues in F3.4).

NOTE – Complex event values or directive qualifiers can be expressed by defining a
complex type, such that the event value is specified by a single type definition.
Alternatively, separate types can be specified for the individual elements forming
the event value or directive qualifier. In the latter case, the event value or
directive qualifier is expressed as a sequence of the individual elements, in which
for each type-specification of such an element, an OID needs to be assigned.

F2.10 The name associated with the OID of an event-value shall be formed by
appending the string ‘EvtValue’ to the name of the OID of the associated event. If the
event-value is expressed as a sequence of values with individually specified types, then
the last digit of the assigned OID shall be appended to the OID name of each of the elements.

F2.11 The name associated with the OID of a directive-qualifier shall be formed
by appending the string ‘DirQual’ to the name of the OID of the associated directive. If the
directive-qualifier is expressed as a sequence of values with individually specified
types, then the last digit of the assigned OID shall be appended to the OID name of each of
the elements.

F2.12 The name of a parameter value, an event-value, or a directive-qualifier
shall be formed by appending the string ‘Type’ to the name of the OID that identifies the
parameter, event-value, or directive-qualifier.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page F-4 February 2021

NOTE – As an example for illustration of the above requirements, the ‘buffered data
delivery configuration change’ event as specified in 4.5.4.2.2 is taken here. The
OID assigned in F3.16 to this event in F3.16 is

pBDDconfigurationChange OBJECT IDENTIFIER ::= {pBDDeventsId 4}

The event value specified in 4.5.4.2.2 consists of a sequence of two elements, the
return-buffer-size and the delivery-latency-limit. Due to this
specification, two OIDs need to be assigned so that the syntax of each of the
elements can be unambiguously identified. Applying the above-specified rules,
the OID assignments and type specifications are:

pBDDconfigurationChangeEvtValue1 OBJECT IDENTIFIER ::=
 {pBDDreturnBufferSize}

PBDDconfigurationChangeEvtValue1Type ::= PBDDreturnBufferSizeType

pBDDconfigurationChangeEvtValue2 OBJECT IDENTIFIER ::=
 {pBDDdeliveryLatencyLimit}

PBDDconfigurationChangeEvtValue2Type ::= PBDDdeliveryLatencyLimitType

If the event ‘buffered data delivery configuration change’ were specified to use a
single element for forming the event-value, then the ASN.1 specification
would be:

pBDDconfigurationChangeEvtValue OBJECT IDENTIFIER ::=
 {pBDDconfigurationChange 1}

PBDDconfigurationChangeEvtValueType ::= SEQUENCE
{ returnBufferSize PBDDreturnBufferSizeType
, deliveryLatencyLimit PBDDdeliveryLatencyLimitType
}

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page F-5 February 2021

F3 DATA TYPE SPECIFICATION

F3.1 LIST OF OBJECT IDENTIFIERS

This module defines the OIDs required for all syntaxes used for the definition of extended
types.

CCSDS-CSTS-OBJECT-IDENTIFIERS
{ iso(1) identified-organization(3) standards-producing-organization(112)
 ccsds(4) css(4) csts(1) framework(1) modules(1) object-identifiers(1) version(2)
}

DEFINITIONS
IMPLICIT TAGS
::= BEGIN

EXPORTS acExtProcedureParam
, agenciesFunctionalities
, bddExtProcedureParam
, bdpExtProcedureParam
, crExtProcedureParam
, crossSupportFunctionalities
, dpExtProcedureParam
, executeDirectiveAcknowledge
, executeDirectiveReturn
, fwProceduresFunctionalities
, getReturn
, modules
, nExtProcedureParam
, operations
, procedures
, scdpExtProcedureParam
, services
, startReturn
, teExtProcedureParam;

css OBJECT IDENTIFIER ::= {1 3 112 4 4}

csts OBJECT IDENTIFIER ::= {css 1}
crossSupportResources OBJECT IDENTIFIER ::= {css 2}

framework OBJECT IDENTIFIER ::= {csts 1}
services OBJECT IDENTIFIER ::= {csts 2}

-- ==
-- FRAMEWORK OBJECT IDENTIFIERS

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page F-6 February 2021

fwProceduresFunctionalities OBJECT IDENTIFIER ::= {framework 4}
modules OBJECT IDENTIFIER ::= {framework 1}
operations OBJECT IDENTIFIER ::= {framework 2}
procedures OBJECT IDENTIFIER ::= {framework 3}
-- ************************************
-- FRAMEWORK OPERATIONS IDENTIFIERS:
bindInvocation OBJECT IDENTIFIER ::= {operations 1}
bindReturn OBJECT IDENTIFIER ::= {operations 2}
unbindInvocation OBJECT IDENTIFIER ::= {operations 3}
unbindReturn OBJECT IDENTIFIER ::= {operations 4}
peerAbortInvocation OBJECT IDENTIFIER ::= {operations 5}
startInvocation OBJECT IDENTIFIER ::= {operations 6}
startReturn OBJECT IDENTIFIER ::= {operations 7}
stopInvocation OBJECT IDENTIFIER ::= {operations 8}
stopReturn OBJECT IDENTIFIER ::= {operations 9}
executeDirectiveInvocation OBJECT IDENTIFIER ::= {operations 10}
executeDirectiveAcknowledge OBJECT IDENTIFIER ::= {operations 11}
executeDirectiveReturn OBJECT IDENTIFIER ::= {operations 12}
getInvocation OBJECT IDENTIFIER ::= {operations 13}
getReturn OBJECT IDENTIFIER ::= {operations 14}
notifyInvocation OBJECT IDENTIFIER ::= {operations 15}
transferDataInvocation OBJECT IDENTIFIER ::= {operations 16}
processDataInvocation OBJECT IDENTIFIER ::= {operations 17}
processDataReturn OBJECT IDENTIFIER ::= {operations 18}

-- ************************************
-- FRAMEWORK PROCEDURES IDENTIFIERS:
-- Identifiers to be used with the type ProcedureType
-- This branch is used to support all extension definitions required
-- for the operations extended by procedures.
associationControl OBJECT IDENTIFIER ::= {procedures 1}
unbufferedDataDelivery OBJECT IDENTIFIER ::= {procedures 2}
bufferedDataDelivery OBJECT IDENTIFIER ::= {procedures 3}
dataProcessing OBJECT IDENTIFIER ::= {procedures 4}
informationQuery OBJECT IDENTIFIER ::= {procedures 5}
notification OBJECT IDENTIFIER ::= {procedures 6}
throwEvent OBJECT IDENTIFIER ::= {procedures 7}

acDerivedProcedures OBJECT IDENTIFIER ::= {associationControl 1}
acExtProcedureParam OBJECT IDENTIFIER ::= {associationControl 2}
uddDerivedProcedures OBJECT IDENTIFIER ::= {unbufferedDataDelivery 1}
uddExtProcedureParam OBJECT IDENTIFIER ::= {unbufferedDataDelivery 2}
bddDerivedProcedures OBJECT IDENTIFIER ::= {bufferedDataDelivery 1}
bddExtProcedureParam OBJECT IDENTIFIER ::= {bufferedDataDelivery 2}
dpDerivedProcedures OBJECT IDENTIFIER ::= {dataProcessing 1}
dpExtProcedureParam OBJECT IDENTIFIER ::= {dataProcessing 2}
iqDerivedProcedures OBJECT IDENTIFIER ::= {informationQuery 1}
iqExtProcedureParam OBJECT IDENTIFIER ::= {informationQuery 2}
nDerivedProcedures OBJECT IDENTIFIER ::= {notification 1}
nExtProcedureParam OBJECT IDENTIFIER ::= {notification 2}
teDerivedProcedures OBJECT IDENTIFIER ::= {throwEvent 1}
teExtProcedureParam OBJECT IDENTIFIER ::= {throwEvent 2}
bufferedDataProcessing OBJECT IDENTIFIER ::= {dpDerivedProcedures 1}
cyclicReport OBJECT IDENTIFIER ::= {uddDerivedProcedures 1}
sequenceControlledDataProcessing OBJECT IDENTIFIER ::= {dpDerivedProcedures 2}

crDerivedProcedures OBJECT IDENTIFIER ::= {cyclicReport 1}
crExtProcedureParam OBJECT IDENTIFIER ::= {cyclicReport 2}

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page F-7 February 2021

bdpDerivedProcedures OBJECT IDENTIFIER ::= {bufferedDataProcessing 1}
bdpExtProcedureParam OBJECT IDENTIFIER ::= {bufferedDataProcessing 2}

scdpDerivedProcedures OBJECT IDENTIFIER ::=
 {sequenceControlledDataProcessing 1}
scdpExtProcedureParam OBJECT IDENTIFIER ::=
 {sequenceControlledDataProcessing 2}

-- ==
-- CROSS SUPPORT RESOURCES
crossSupportFunctionalities OBJECT IDENTIFIER ::= {crossSupportResources 1}
agenciesFunctionalities OBJECT IDENTIFIER ::= {crossSupportResources 2}

END

F3.2 SERVICE-INSTANCE-ID

NOTE – This module defines the format of the Service Instance Identifier (see 3.4.2.2.7)
used in the BIND operation.

CCSDS-CSTS-SERVICE-INSTANCE-ID
{ iso(1) identified-organization(3) standards-producing-organization(112)
 ccsds(4) css(4) csts(1) framework(1) modules(1) service-instance(2)
 version(1)
}

DEFINITIONS
IMPLICIT TAGS
::= BEGIN

EXPORTS ServiceInstanceIdentifier
;
IMPORTS IntUnsigned
, PublishedIdentifier
 FROM CCSDS-CSTS-COMMON-TYPES
;

ServiceInstanceIdentifier ::= SEQUENCE
{ spacecraftId PublishedIdentifier
, facilityId PublishedIdentifier
, serviceType PublishedIdentifier
, serviceInstanceNumber IntUnsigned
}

END

F3.3 CROSS SUPPORT TRANSFER SERVICE — COMMON TYPES

CCSDS-CSTS-COMMON-TYPES
{ iso(1) identified-organization(3) standards-producing-organization(112)
 ccsds(4) css(4) csts(1) framework(1) modules(1) common-types(3) version(2)
}

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page F-8 February 2021

DEFINITIONS
IMPLICIT TAGS
::= BEGIN

EXPORTS AbstractChoice
, AdditionalText
, AuthorityIdentifier
, BufferSize
, ConditionalTime
, DataTransferMode
, DataUnitId
, DeliveryLatencyLimit
, DeliveryMode
, Diagnostic
, Duration
, Embedded
, EventValue
, Extended
, FRorProcedureName
, FunctionalResourceInstanceNumber
, FunctionalResourceName
, FunctionalResourceType
, IdentifierString
, IntPos
, IntUnsigned
, InvokeId
, Label
, ListOfNamesDiagnosticExt
, ListOfParametersEvents
, ListOfParamEventsDiagnostics
, LogicalPortName
, Name
, PortId
, ProcedureName
, ProcessingLatencyLimit
, ProductionStatus
, PublishedIdentifier
, QualifiedParameter
, StandardAcknowledgeHeader
, StandardInvocationHeader
, StandardReturnHeader
, Time
, TypeAndValue
, UnknownName
;

-- This type is used by operations allowing the procedures using them to select two
-- possibilities for the definition of the data parameter:
-- 1. opaqueString: direct use, no extension required;
-- 2. extendedData: definition of a complex type using a constructed syntax
AbstractChoice ::= CHOICE
{ opaqueString [0] OCTET STRING
, extendedData [1] Embedded
}

-- In the event of a negative result, the value of the diagnostic
-- is complemented by the following type (see 3.2.1.7 a)):
AdditionalText ::= VisibleString

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page F-9 February 2021

-- Appellation is used between the service provider and the service user.
-- This appellation not being formally agreed can only be used for logging
-- or tracing.
Appellation ::= VisibleString (SIZE (1 .. 128))

AuthorityIdentifier ::= IdentifierString (SIZE (3 .. 16))

BufferSize ::= IntPos

ConditionalTime ::= CHOICE
{ undefined [0] NULL
, known [1] Time
}

-- If credentials are used, it will be necessary that the internal
-- structure of the octet string is known to both parties. Since the
-- structure will depend on the algorithm used, it is not specified here.
-- However, the peer entities may use ASN.1 encoding to make the internal
-- structure visible.
Credentials ::= CHOICE
{ unused [0] NULL
, used [1] OCTET STRING (SIZE (8 .. 256))
}

DataTransferMode ::= ENUMERATED
{ undefined (0)
, timely (1)
, complete (2)
}

DataUnitId ::= IntUnsigned

DeliveryLatencyLimit ::= IntPos

DeliveryMode ::= ENUMERATED
{ undefined (0)
, realTime (1)
, complete (2)
}

-- The diagnostics defined here are to be used with all operation returns.
-- Note:
-- By means of the 'diagnosticExtension' CHOICE, additional values of the
-- diagnostic parameter can be introduced if that is necessary for the
-- negative return or acknowledgement of an operation.
Diagnostic ::= CHOICE
{ invalidParameterValue [0] SEQUENCE
 { text AdditionalText
 , appellation Appellation -- of the invalid parameter
 }
, conflictingValues [1] SEQUENCE
 { text AdditionalText
 , appellations SEQUENCE OF Appellation
 }
, otherReason [2] AdditionalText
, unsupportedOption [3] AdditionalText
, diagnosticExtension [100] Embedded
}

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page F-10 February 2021

-- The Duration maybe expressed in seconds, milliseconds, or microseconds
Duration ::= CHOICE
{ seconds [0] IntUnsigned
, milliseconds [1] IntUnsigned
, microseconds [2] IntUnsigned
}

Embedded ::= EMBEDDED PDV

EventValue ::= CHOICE
{ qualifiedValues [0] SequenceOfQualifiedValue
, empty [1] NULL
, eventValueExtension [100] Embedded
}

Extended ::= CHOICE
{ external [0] Embedded
, notUsed [1] NULL
}

FRorProcedureName ::= CHOICE
{ functionalResourceName [0] FunctionalResourceName
, procedureName [1] ProcedureName
}

FunctionalResourceName ::= SEQUENCE
{ functionalResourceType FunctionalResourceType
, functionalResourceInstanceNumber FunctionalResourceInstanceNumber
}

FunctionalResourceInstanceNumber ::= IntPos

FunctionalResourceType ::= PublishedIdentifier

IdentifierString ::= VisibleString (FROM (ALL EXCEPT " "))

-- 1 to (2̂ 32)-1
IntPos ::= INTEGER (1 .. 4294967295)

-- 0 to (2̂ 32)-1
IntUnsigned ::= INTEGER (0 .. 4294967295)

InvokeId ::= IntUnsigned

-- The Label structure is used to identify:
-- 1. the Label of a parameter
-- 2. the Label of an event
Label ::= PublishedIdentifier

ListOfNamesDiagnosticExt ::= CHOICE
{ unknownNames [0] SEQUENCE OF UnknownName
, unknownDefault [1] AdditionalText
, diagnosticExtension [100] Embedded
}

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page F-11 February 2021

-- The type ListOfParametersEvents is used by the service user to select
-- the parameters by means of the START of the Cyclic Report procedure and
-- by means of the GET operation. While the choices [0] to [5] relate to
-- Cross Support Resources, the choices [6] and [7] relate to the
-- configration parameters registered in the framework resources branch.
ListOfParametersEvents ::= CHOICE
{ empty [0] NULL -- signifying default list
, listName [3] VisibleString
, functionalResourceType [5] FunctionalResourceType
, functionalResourceName [4] FunctionalResourceName
, procedureType [6] ProcedureType
, procedureName [7] ProcedureName
, paramEventLabels [2] SEQUENCE OF Label
, paramEventNames [1] SEQUENCE OF Name
}

ListOfParamEventsDiagnostics ::= CHOICE
{ undefinedDefault [4] AdditionalText
, unknownListName [3] VisibleString
, unknownFunctionalResourceType [1] FunctionalResourceType
, unknownFunctionalResourceName [0] FunctionalResourceName
, unknownProcedureType [5] ProcedureType
, unknownProcedureName [6] ProcedureName
, unknownParamEventIdentifier [2] SEQUENCE OF CHOICE
 { paramEventLabel [0] Label
 , paramEventName [1] Name
 }
}

LogicalPortName ::= IdentifierString (SIZE (1 .. 128))

MaxFwdBufferSize ::= IntPos

-- The Name structure is used to identify:
-- 1. the Name of a parameter
-- 2. the Name of an event
-- 3. the Name of a directive
Name ::= SEQUENCE
{ fRorProcedureName FRorProcedureName
, paramOrEventOrDirectiveId PublishedIdentifier
}

PortId ::= LogicalPortName

ProcedureName ::= SEQUENCE
{ procedureType ProcedureType
, procedureRole CHOICE
 { primeProcedure [0] NULL
 , secondaryProcedure [1] IntPos
 , associationControl [2] NULL
 }
}
-- The ProcedureType is an Object Identifier, the allocation of which is
-- under control of CCSDS. It is declared in the ASN.1 module
-- CCSDS-CSTS-OBJECT-IDENTIFIERS (see F3.1).
ProcedureType ::= OBJECT IDENTIFIER

ProcessingLatencyLimit ::= IntUnsigned

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page F-12 February 2021

ProductionStatus ::= ENUMERATED
{ configured (0)
, operational (1)
, interrupted (2)
, halted (3)
}

-- A PublishedIdentifier is an identifier agreed to between the service
-- provider and the service user. The identifier is registered in SANA
-- (See D2)
PublishedIdentifier ::= OBJECT IDENTIFIER

QualifiedValue ::= CHOICE
{ valid [0] TypeAndValue -- Valid value
, unavailable [1] NULL -- Unknown or unavailable value
, undefined [2] NULL -- Undefined in the context
, error [3] NULL -- Processing resulted in an error
}

-- The definition of the parameters can be found in annex C.
QualifiedParameter ::= SEQUENCE
{ parameterName Name
, qualifiedValues SequenceOfQualifiedValue
}

SequenceOfQualifiedValue ::= SEQUENCE OF QualifiedValue

StandardAcknowledgeHeader ::= StandardReturnHeader

StandardInvocationHeader ::= SEQUENCE
{ invokerCredentials Credentials
, invokeId InvokeId
, procedureName ProcedureName
}

StandardReturnHeader ::= SEQUENCE
{ performerCredentials Credentials
, invokeId InvokeId
, result CHOICE
 { positive [0] Extended -- To carry the positive results
 , negative [1] SEQUENCE
 { diagnostic Diagnostic
 , negExtension Extended
 -- The default value of the negExtension parameter is
 -- 'notUsed'.
 -- Unless a PDU that uses the StandardReturnHeader
 -- explicitly defines an extension type to be used
 -- as the value of negExtension for that PDU, the
 -- value shall be 'notUsed'.
 }
 }
}

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page F-13 February 2021

Time ::= CHOICE
{ ccsdsFormatMilliseconds [0] TimeCCSDSMilli
, ccsdsFormatPicoseconds [1] TimeCCSDSPico
}

TimeCCSDSMilli ::= OCTET STRING (SIZE(8))
-- P-field is implicit (not present, defaulted to 41 hex
-- T-field:
-- 2 octets: number of days since 1958/01/01 00:00:00;
-- 4 octets: number of milliseconds of the day;
-- 2 octets: number of microseconds of the millisecond (set to 0 if not used).
-- This definition reflects exactly the format of the CCSDS defined
-- time tag as used in spacelink data units (see reference [5]).

TimeCCSDSPico ::= OCTET STRING (SIZE(10))
-- P-field is implicit (not present, defaulted to 42 hex)
-- T-field:
-- 2 octets: number of days since 1958/01/01 00:00:00;
-- 4 octets: number of milliseconds of the day;
-- 4 octets: number of picoseconds of the millisecond (set to 0 if not used).
-- This definition reflects exactly the format of the CCSDS-defined
-- time tag as used in spacelink data units (see reference [5]).

TypeAndValue ::= Embedded

UnknownName ::= SEQUENCE
{ text AdditionalText
, name Name
}

END

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page F-14 February 2021

F3.4 COMMON OPERATIONS PDUS

CCSDS-CSTS-COMMON-OPERATIONS-PDUS
{ iso(1) identified-organization(3) standards-producing-organization(112)
 ccsds(4) css(4) csts(1) framework(1) modules(1) common-operations(4) version(2)
}

DEFINITIONS
IMPLICIT TAGS
::= BEGIN

EXPORTS ExecuteDirectiveAcknowledge
, ExecuteDirectiveInvocation
, ExecuteDirectiveReturn
, GetInvocation
, GetReturn
, NotifyInvocation
, ProcessDataInvocation
, ProcessDataReturn
, StartInvocation
, StartReturn
, StopInvocation
, StopReturn
, TransferDataInvocation
;

IMPORTS AbstractChoice
, AdditionalText
, DataUnitId
, EventValue
, Extended
, Embedded
, FunctionalResourceInstanceNumber
, FunctionalResourceName
, IntUnsigned
, ListOfParametersEvents
, ListOfParamEventsDiagnostics
, Name
, ProcedureName
, PublishedIdentifier
, QualifiedParameter
, StandardAcknowledgeHeader
, StandardInvocationHeader
, StandardReturnHeader
, Time
, TypeAndValue
 FROM CCSDS-CSTS-COMMON-TYPES

 executeDirectiveAcknowledge
, executeDirectiveReturn
, getReturn
, startReturn
 FROM CCSDS-CSTS-OBJECT-IDENTIFIERS
;

-- ===
-- The first part of the module is left empty as there are no PDUs
-- defined in this module.
-- ===

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page F-15 February 2021

-- ===
-- The second part of the module defines the common operations
-- the service provider may receive.
-- ===

DirectiveQualifierValues ::= CHOICE
{ sequenceOfParamIdsAndValues [0] SequenceOfParameterIdsAndValues
, parameterlessValues [1] TypeAndValue
, noQualifierValues [2] NULL
}

ExecuteDirectiveInvocation ::= SEQUENCE
{ standardInvocationHeader StandardInvocationHeader
, directiveIdentifier PublishedIdentifier
, directiveQualifier CHOICE
 { localProcDirQualifier [0] DirectiveQualifierValues
 , serviceProcDirQualifier [1] SEQUENCE
 { targetProcedureName ProcedureName
 , serviceProcDirQualifierValues DirectiveQualifierValues
 }
 , functResourceDirQualifier [2] SEQUENCE
 { functResourceName FunctionalResourceName
 , functionalResourceQualifiers DirectiveQualifierValues
 }
 , directiveQualifierExtension [3] Embedded
 }
, executeDirectiveInvocationExtension Extended
}

GetInvocation ::= SEQUENCE
{ standardInvocationHeader StandardInvocationHeader
, listOfParameters ListOfParametersEvents -- See 3.12.2.2.2
, getInvocationExtension Extended
}

ProcessDataInvocation ::= SEQUENCE
{ standardInvocationHeader StandardInvocationHeader
, dataUnitId DataUnitId
, data AbstractChoice -- See 3.10.2.2.4.
, processDataInvocationExtension Extended
}

SequenceOfParameterIdsAndValues ::= SEQUENCE OF SEQUENCE
{ parameterIdentifier PublishedIdentifier
, parameterValue TypeAndValue
}

StartInvocation ::= SEQUENCE
{ standardInvocationHeader StandardInvocationHeader
, startInvocationExtension Extended
}

StopInvocation ::= SEQUENCE
{ standardInvocationHeader StandardInvocationHeader
, stopInvocationExtension Extended
}

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page F-16 February 2021

-- ===
-- The third part of the module defines the common operations
-- the service provider may send.
-- ===

ExecuteDirectiveAcknowledge ::= StandardAcknowledgeHeader

ExecuteDirectiveReturn ::= StandardReturnHeader

GetReturn ::= StandardReturnHeader

-- The Published Identifier part of the eventName is defined by Functional Resource type -
- specific Object Identifier (see https://sanaregistry.org/r/functional_resources) or by
-- procedure type specific Published Identifiers(see F3.16).
NotifyInvocation ::= SEQUENCE
{ standardInvocationHeader StandardInvocationHeader
, eventTime Time
, eventName Name
, eventValue EventValue
, notifyInvocationExtension Extended
}

ProcessDataReturn ::= StandardReturnHeader

StartReturn ::= StandardReturnHeader

StopReturn ::= StandardReturnHeader

TransferDataInvocation ::= SEQUENCE
{ standardInvocationHeader StandardInvocationHeader
, generationTime Time
, sequenceCounter IntUnsigned
, data AbstractChoice
, transferDataInvocationExtension Extended
}

-- ===
-- The fourth part of the module defines the extensions
-- of the common operations the service provider may send.
-- ===

-- *****
-- EXECUTE-DIRECTIVE invocation
-- The EXECUTE-DIRECTIVE invocation is not extended, i.e.,
-- 'ExecuteDirectiveInvocation': 'executeDirectiveInvocationExtension' is
-- set to 'notUsed'.

https://sanaregistry.org/r/functional_resources/

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page F-17 February 2021

-- EXECUTE-DIRECTIVE acknowledgement
-- The EXECUTE-DIRECTIVE positive acknowledgement does not extend
-- ExecuteDirectiveAcknowledge; that is, 'ExecuteDirectiveAcknowledge':
-- 'StandardAcknowledgeHeader': 'StandardReturnHeader': 'result':
-- 'positive' shall be set to 'notUsed'.
-- The EXECUTE-DIRECTIVE negative acknowledgement does not extend
-- ExecuteDirectiveAcknowledge; that is, 'ExecuteDirectiveAcknowledge':
-- 'StandardAcknowledgeHeader': 'StandardReturnHeader': 'result':
-- 'negative': 'negExtension'shall be set to 'notUsed'.
-- The EXECUTE DIRECTIVE negative acknowledgement makes use of: (a) one of
-- the common diagnostics of the StandardReturnHeader type (see diagnostic
-- parameter defined in 3.3.2.7) except 'diagnosticExtension'; or (b) one
-- of the diagnostic values defined by 'ExecuteDirectiveAcknowledge':
-- 'StandardAcknowledgeHeader': 'StandardReturnHeader': 'result':
-- 'negative': 'diagnostic': 'Diagnostic': 'diagnosticExtension':
-- 'execDirAckDiagExt': 'ExecDirNegAckDiagnosticExt' in F3.4 except
-- 'execDirNegAckDiagnosticExtExtension'.
ExecDirNegAckDiagnosticExt ::= CHOICE
{ unknownDirective [0] NULL
, unknownQualifier [1] NULL
, invalidProcedureName [2] NULL
, invalidFunctionalResourceName [3] NULL
, invalidFunctionalResourceParameter [4] SET OF Name
, invalidProcedureParameter [5] SET OF Name
, parameterValueOutOfRange [6] SET OF Name
, execDirNegAckDiagnosticExtExtension [100] Embedded
}

execDirAckDiagExt OBJECT IDENTIFIER ::= {executeDirectiveAcknowledge 1}

-- EXECUTE-DIRECTIVE return
-- The EXECUTE-DIRECTIVE positive return does not extend
-- ExecuteDirectiveReturn; that is, 'ExecuteDirectiveReturn':
-- 'StandardReturnHeader': 'result': 'positive' shall be set to 'notUsed'.
-- The EXECUTE-DIRECTIVE negative return does not extend
-- ExecuteDirectiveReturn; that is, 'ExecuteDirectiveReturn':
-- 'StandardReturnHeader': 'result': 'negative': 'negExtension' shall be
-- set to 'notUsed'.
-- The EXECUTE DIRECTIVE negative return makes use of: (a) one of the
-- common diagnostics of 'StandardReturnHeader': 'result': 'negative':
-- 'diagnostic': 'Diagnostic' (see 3.3.2.7 and F3.3) except
-- 'diagnosticExtension'; or (b) one of the diagnostic values defined by
-- 'ExecuteDirectiveReturn': 'StandardReturnHeader': 'result': 'negative':
-- 'diagnostic': 'Diagnostic': 'diagnosticExtension':
-- 'execDirNegReturnDiagnosticExt': 'ExecDirNegReturnDiagnosticExt' in F3.4
-- except 'execDirNegReturnDiagnosticExtExtension'.
ExecDirNegReturnDiagnosticExt ::= CHOICE
{ actionNotCompleted [0] ActionNotCompletedDiag
, execDirNegReturnDiagnosticExtExtension [100] Embedded
}

execDirNegReturnDiagnosticExt OBJECT IDENTIFIER ::=
 {executeDirectiveReturn 1}

ActionNotCompletedDiag ::= CHOICE
{ parameterNames [0] SET OF Name
, noParameterNames [1] NULL
}

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page F-18 February 2021

-- *****
-- GET invocation
-- The GET invocation is not extended; that is, 'GetInvocation':
-- 'getInvocationExtension' shall be set to 'notUsed'.

-- GET Return
-- The GET positive return extends the GetReturn by adding the parameters
-- 'qualifiedParameters' and 'getPosReturnExtExtension' defined by
-- 'GetReturn': 'StandardReturnHeader': 'result': 'positive':
-- 'getPosReturnExt': 'GetPosReturnExt'. This extension only defines the
-- 'qualifiedParameters' parameter. 'getPosReturnExtExtension' shall be set
-- to 'notUsed'.
GetPosReturnExt ::= SEQUENCE
{ qualifiedParameters QualifiedParametersSequence
, getPosReturnExtExtension Extended
}

getPosReturnExt OBJECT IDENTIFIER ::= {getReturn 1}

-- The GET negative return does not extend GetReturn; that is, 'GetReturn':
-- 'StandardReturnHeader': 'result': 'negative': 'negExtension' shall be
-- set to 'notUsed'.
-- The GET negative return makes use of: (a) one of the common diagnostics
-- of 'StandardReturnHeader': 'result': 'negative': 'diagnostic':
-- 'Diagnostic' (see diagnostic parameter defined in 3.3.2.7 and F3.3)
-- except 'diagnosticExtension'; or (b) one of the additional diagnostic
-- values defined by 'GetReturn': 'StandardReturnHeader': 'result':
-- 'negative': 'diagnostic': 'Diagnostic': 'diagnosticExtension':
-- 'getDiagnosticExt': 'GetDiagnosticExt' in F3.4 except
-- 'getDiagnosticExtExtension'.
GetDiagnosticExt ::= CHOICE
{ common [0] ListOfParamEventsDiagnostics
, getDiagnosticExtExtension [100] Embedded
}

getDiagnosticExt OBJECT IDENTIFIER ::= {getReturn 2}

QualifiedParametersSequence ::= SEQUENCE OF QualifiedParameter

-- *****
-- START invocation
-- The START invocation is not extended; that is, 'StartInvocation':
-- 'startInvocationExtension' shall be set to 'notUsed'.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page F-19 February 2021

-- START return
-- The START positive return does not extend StartReturn; that is,
-- 'StartReturn': 'StandardReturnHeader': 'result': 'positive' shall be set
-- to 'notUsed'.
-- The START negative return does not extend StartReturn; that is,
-- 'StartReturn': 'StandardReturnHeader': 'result': 'negative':
-- 'negExtension' shall be set to 'notUsed'.
-- The START negative return makes use of: (a) one of the common
-- diagnostics of 'StandardReturnHeader': 'result': 'negative':
-- 'diagnostic': 'Diagnostic' (see 3.3.2.7 and F3.3) except
-- 'diagnosticExtension'; or (b) one of the additional values specified by
-- 'StartReturn': 'StandardReturnHeader': 'result': 'negative':
-- 'diagnostic': 'Diagnostic': 'diagnosticExtension': 'startDiagnosticExt':
-- 'StartDiagnosticExt' in F3.4 except 'startDiagnosticExtExtension'.
StartDiagnosticExt ::= CHOICE
{ unableToComply [0] AdditionalText
, outOfService [1] AdditionalText
, startDiagnosticExtExtension [100] Embedded
}

startDiagnosticExt OBJECT IDENTIFIER ::= {startReturn 1}

-- *****
-- STOP invocation
-- The STOP invocation is not extended; that is, 'StopInvocation':
-- 'stopInvocationExtension' shall be set to 'notUsed'.

-- STOP return
-- The STOP positive return does not extend StopReturn; that is, 'StopReturn':
-- 'StandardReturnHeader': 'result': 'positive' shall be set to 'notUsed'.
-- The STOP negative return does not extend StopReturn; that is, 'StopReturn':
-- 'StandardReturnHeader': 'result': 'negative': 'negExtension' shall be
-- set to 'notUsed'.
-- The STOP negative return makes use of one of the common diagnostics
-- of 'StandardReturnHeader': 'result': 'negative': 'diagnostic':
-- 'Diagnostic' (see 3.3.2.7 and F3.3) except 'diagnosticExtension'.

END

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page F-20 February 2021

F3.5 PROCEDURE — ASSOCIATION CONTROL PDUS

CCSDS-CSTS-ASSOCIATION-CONTROL-TYPES
{ iso(1) identified-organization(3) standards-producing-organization(112)
 ccsds(4) css(4) csts(1) framework(1) modules(1)

associationControlPdus(5) version(1)
}

DEFINITIONS
IMPLICIT TAGS
::= BEGIN

EXPORTS AssociationPdu
, BindInvocation
, BindReturn
, PeerAbortInvocation
, UnbindInvocation
, UnbindReturn
;

IMPORTS AdditionalText
, AuthorityIdentifier
, Embedded
, Extended
, IntPos
, PortId
, PublishedIdentifier
, StandardInvocationHeader
, StandardReturnHeader
 FROM CCSDS-CSTS-COMMON-TYPES

 ServiceInstanceIdentifier
 FROM CCSDS-CSTS-SERVICE-INSTANCE-ID

 acExtProcedureParam
 FROM CCSDS-CSTS-OBJECT-IDENTIFIERS

 CstsFrameworkPdu
 FROM CCSDS-CSTS-PDUS
;

-- ===
-- The first part of the module definition defines the PDU containing
-- the operations used by the Association Control procedure.
-- ===
AssociationPdu ::= CstsFrameworkPdu (WITH COMPONENTS
 { bindInvocation
 , bindReturn
 , unbindInvocation
 , unbindReturn
 , peerAbortInvocation
 }
)

-- ===
-- The second part of the module defines the operations
-- of the Association Control procedure.
-- ===

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page F-21 February 2021

BindInvocation ::= SEQUENCE
{ standardInvocationHeader StandardInvocationHeader
, initiatorIdentifier AuthorityIdentifier
, responderPortIdentifier PortId
, serviceType ServiceType
, versionNumber VersionNumber
, serviceInstanceIdentifier ServiceInstanceIdentifier
, bindInvocationExtension Extended
}

BindReturn ::= SEQUENCE
{ standardReturnHeader StandardReturnHeader
, responderIdentifier AuthorityIdentifier
}

PeerAbortInvocation ::= SEQUENCE
{ diagnostic PeerAbortDiagnostic
}

UnbindInvocation ::= SEQUENCE
{ standardInvocationHeader StandardInvocationHeader
, unbindInvocationExtension Extended
}

UnbindReturn ::= StandardReturnHeader

-- ===
-- The third part contains the types used by the operations
-- defined in the second part.
-- ===

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page F-22 February 2021

-- Peer Abort diagnostic values definition:
-- 0-39: SLE (usage: 0-8 and 127 for all SLE services)
-- 128-199: ISP
-- 200-250: Application
-- PEER-ABORT diagnostic definition:
-- The diagnostic of the PEER-ABORT only allows to carry one
-- octet of information (see ISP1, reference [2]).
-- The following ASN.1 definition is a dummy definition:
PeerAbortDiagnostic ::= OCTET STRING (SIZE(1))
-- The standard Association Control procedure as defined in this
-- Recommended Standard reserves the PEER-ABORT diagnostic values from 40
-- to 69 and 126. The values of the PEER-ABORT diagnostic defined (as
-- integers) by the Association Control procedure (see 3.6.2.2) are:
-- accessDenied (40)
-- unexpectedResponderId (41)
-- operationalRequirement (42)
-- protocolError (43)
-- communicationsFailure (44)
-- encodingError (45)
-- responseTimeout (46)
-- endOfServiceProvisionPeriod (47)
-- unsolicitedInvokeId (48)
-- duplicateInvokeId (49)
-- invalidProcedureName (50)
-- unrecognizedType (51)
-- otherReason (126)
-- As per 4.3.3.1.11.4, a procedure may trigger an abort of the association
-- and passing the desired diagnostic value. Values in the range from 70 to
-- 125 are reserved for this purpose.

-- The Buffered Data Processing procedure may use the following diagnostic:
-- forwardBufferTooLarge (70)

-- Future versions of this Recommended Standard may specify additional
-- procedures and additional procedure-specific diagnostic values in the
-- range 71 to 125.

-- Service-type specific procedures (derived or service-original) may use
-- diagnostic values in the range reserved for applications 200 to 250.
-- Since the service type is known when a PEER-ABORT is received,
-- different service types can choose the diagnostic values independently
-- of each other.

-- The Service Type is an OID, the allocation of which is
-- under control of CCSDS. See the example in annex K.

ServiceType ::= PublishedIdentifier

VersionNumber ::= IntPos

-- ===
-- The fourth part of the module definition contains the Extended
-- types used by the operations defined in the second part.
-- ===

-- *****
-- BIND invocation
-- The BIND invocation is not extended; that is, 'BindInvocation':
-- 'bindInvocationExtension' shall be set to 'notUsed'.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page F-23 February 2021

-- BIND return
-- The BIND positive return does not extend BindReturn; that is, 'BindReturn':
-- 'StandardReturnHeader': 'result': 'positive' shall be set to 'notUsed'.
-- The BIND negative return does not extend BindReturn; that is, 'BindReturn':
-- 'StandardReturnHeader': 'result': 'negative': 'negExtension' shall be
-- set to 'notUsed'.
-- The BIND negative return makes use of: (a) one of the common
-- diagnostics of 'StandardReturnHeader': 'result': 'negative':
-- 'diagnostic': 'Diagnostic' (see 3.3.2.7 and F3.3) except
-- 'diagnosticExtension'; or (b) one of the additional diagnostics
-- specified by 'BindReturn': 'StandardReturnHeader': 'result': 'negative':
-- 'diagnostic': 'Diagnostic': 'diagnosticExtension': 'acBindDiagExt':
-- 'AssocBindDiagnosticExt' in F3.5 except
-- 'assocBindDiagnosticExtExtension'.
AssocBindDiagnosticExt ::= CHOICE
{ accessDenied [1] AdditionalText
, serviceTypeNotSupported [2] AdditionalText
, versionNotSupported [3] AdditionalText
, noSuchServiceInstance [4] AdditionalText
, alreadyBound [5] AdditionalText
, siNotAccessibleToThisInitiator [6] AdditionalText
, inconsistentServiceType [7] AdditionalText
, outOfService [8] AdditionalText
, assocBindDiagnosticExtExtension [100] Embedded
}

acBindDiagExt OBJECT IDENTIFIER ::= {acExtProcedureParam 1}

-- *****
-- UNBIND invocation
-- The UNBIND invocation is not extended; that is, 'UnbindInvocation':
-- 'unbindInvocationExtension' shall be set to 'notUsed'.

-- UNBIND return
-- The UNBIND positive return does not extend UnbindReturn; that is,
-- 'UnbindReturn': 'StandardReturnHeader': 'result': 'positive' shall be
-- set to 'notUsed'.
-- The UNBIND negative return is not used; that is, 'UnbindReturn':
-- 'StandardReturnHeader': 'result' must not be set to 'negative'.

END

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page F-24 February 2021

F3.6 PROCEDURE — UNBUFFERED DATA DELIVERY PDUS

CCSDS-CSTS-UNBUFFERED-DATA-DELIVERY-PDUS
{ iso(1) identified-organization(3) standards-producing-organization(112)

ccsds(4) css(4) csts(1) framework(1) modules(1) unbuffDataDeliveryPdus(6)
 version(1)
}

DEFINITIONS
IMPLICIT TAGS
::= BEGIN

-- Main PDU exported to allow possible extension by derived procedures
EXPORTS UnbufferedDataDeliveryPdu
;

IMPORTS CstsFrameworkPdu
 FROM CCSDS-CSTS-PDUS
;

-- ===
-- The first part of the module definition defines the PDU containing
-- the operations used by the Unbuffered Data Delivery procedure.
-- ===
UnbufferedDataDeliveryPdu ::= CstsFrameworkPdu (WITH COMPONENTS
 { startInvocation
 , startReturn
 , stopInvocation
 , stopReturn
 , transferDataInvocation
 }
)

-- ===
-- The second part of the module defines the operations
-- of the Unbuffered Data Delivery procedure.
-- ===
-- All operations are defined in the module
-- CCSDS-CSTS-COMMON-OPERATIONS-PDUS (see F3.4)

-- ===
-- The third part contains the types used by the operations
-- defined in the second part.
-- ===
-- This procedure does not have specific definitions.

-- ===
-- The fourth part of the module definition contains the Extended
-- types used by the operations defined in the second part.
-- ===

-- *****
-- START invocation
-- The START invocation is not extended; that is, 'StartInvocation':
-- 'startInvocationExtension' shall be set to 'notUsed'.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page F-25 February 2021

-- START return
-- The START positive return does not extend StartReturn; that is,
-- 'StartReturn': 'StandardReturnHeader': 'result': 'positive' shall be set
-- to 'notUsed'.
-- The START negative return does not extend StartReturn; that is,
-- 'StartReturn': 'StandardReturnHeader': 'result': 'negative':
-- 'negExtension' shall be set to 'notUsed'.
-- The START negative return makes use of: (a) one of the common
-- diagnostics of 'StandardReturnHeader': 'result': 'negative':
-- 'diagnostic': 'Diagnostic' (see 3.3.2.7 and F3.3) except
-- 'diagnosticExtension'; or (b) one of the additional values specified by
-- 'StartReturn': 'StandardReturnHeader': 'result': 'negative':
-- 'diagnostic': 'Diagnostic': 'diagnosticExtension': 'startDiagnosticExt':
-- 'StartDiagnosticExt' in F3.6 except 'startDiagnosticExtExtension'.

-- *****
-- STOP Invocation
-- The STOP invocation is not extended; that is, 'StopInvocation':
-- 'stopInvocationExtension' shall be set to 'notUsed'.

-- STOP return
-- The STOP positive return does not extend StopReturn; that is, 'StopReturn':
-- 'StandardReturnHeader': 'result': 'positive' shall be set to 'notUsed'.
-- The STOP negative return does not extend StopReturn; that is, 'StopReturn':
-- 'StandardReturnHeader': 'result': 'negative': 'negExtension' shall be
-- set to 'notUsed'.
-- The STOP negative return makes use of one of the common diagnostics
-- of 'StandardReturnHeader': 'result': 'negative': 'diagnostic':
-- 'Diagnostic' (see 3.3.2.7 and F3.3) except 'diagnosticExtension'.

-- TRANSFER-DATA Invocation
-- The TRANSFER-DATA invocation is not extended; that is,
-- 'TransferDataInvocation': 'transferDataInvocationExtension' shall be set
-- to 'notUsed'.

END

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page F-26 February 2021

F3.7 PROCEDURE — BUFFERED DATA DELIVERY PDUS

CCSDS-CSTS-BUFFERED-DATA-DELIVERY-PDUS
{ iso(1) identified-organization(3) standards-producing-organization(112)
 ccsds(4) css(4) csts(1) framework(1) modules(1) buffDataDeliveryPdus(7)
 version(1)
}

DEFINITIONS
IMPLICIT TAGS
::= BEGIN

-- Main PDU exported to allow possible extension by derived procedures
EXPORTS BufferedDataDeliveryPdu
, ReturnBuffer
;

IMPORTS AdditionalText
, ConditionalTime
, Embedded
, Extended
 FROM CCSDS-CSTS-COMMON-TYPES

 bddExtProcedureParam
 FROM CCSDS-CSTS-OBJECT-IDENTIFIERS

 NotifyInvocation
, TransferDataInvocation
 FROM CCSDS-CSTS-COMMON-OPERATIONS-PDUS

 CstsFrameworkPdu
 FROM CCSDS-CSTS-PDUS
;

-- ===
-- The first part of the module definition defines the PDU containing
-- the operations used by the Buffered Data Delivery procedure.
-- ===
BufferedDataDeliveryPdu ::= CstsFrameworkPdu (WITH COMPONENTS
 { startInvocation
 , startReturn
 , stopInvocation
 , stopReturn
 , returnBuffer
 }
)

-- ===
-- The second part of the module defines the operations
-- of the Buffered Data Delivery procedure.
-- ===
-- All operations are defined in the module
-- CCSDS-CSTS-COMMON-OPERATIONS-PDUS (see F3.4)

-- The ReturnBuffer is not an operation but is the concatenation of
-- one or more TRANSFER-DATA and/or NOTIFY invocations.
ReturnBuffer ::= SEQUENCE OF TransferDataOrNotification

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page F-27 February 2021

-- ===
-- The third part contains the types used by the operations
-- defined in the second part.
-- ===

TransferDataOrNotification ::= CHOICE
{ transferDataInvocation [0] TransferDataInvocation
, notifyInvocation [1] NotifyInvocation
}

-- ===
-- The fourth part of the module definition contains the Extended
-- types used by the operations defined in the second part.
-- ===

-- *****
-- START invocation
-- The START invocation is extended with the additional parameters
-- 'startGenerationTime' and 'stopGenerationTime'. This extension is
-- defined by 'StartInvocation': 'startInvocationExtension':
-- 'bddStartInvocExt': 'BuffDataDelStartInvocExt'. No further parameters
-- are added; that is, 'StartInvocation': 'startInvocationExtension':
-- 'bddStartInvocExt': 'BuffDataDelStartInvocExt':
-- 'buffDataDelStartInvocExtExtension' shall be set to 'notUsed'.
BuffDataDelStartInvocExt ::= SEQUENCE
{ startGenerationTime ConditionalTime
, stopGenerationTime ConditionalTime
, buffDataDelStartInvocExtExtension Extended
}

bddStartInvocExt OBJECT IDENTIFIER ::= {bddExtProcedureParam 1}

-- START return
-- The START positive return does not extend StartReturn; that is,
-- 'StartReturn': 'StandardReturnHeader': 'result': 'positive' shall be set
-- to 'notUsed'.
-- The START negative return does not extend StartReturn; that is,
-- 'StartReturn': 'StandardReturnHeader': 'result': 'negative':
-- 'negExtension' shall be set to 'notUsed'.
-- The START negative return makes use of: (a) one of the common
-- diagnostics of 'StandardReturnHeader': 'result': 'negative':
-- 'diagnostic': 'Diagnostic' (see 3.3.2.7 and F3.3) except
-- 'diagnosticExtension'; (b) one of the additional diagnostics defined
-- by 'StartReturn': 'StandardReturnHeader': 'result': 'negative':
-- 'diagnostic': 'Diagnostic': 'diagnosticExtension': 'startDiagnosticExt':
-- 'StartDiagnosticExt' in F3.4 except 'startDiagnosticExtExtension'; or
-- (c) one of the additional values defined by 'StartReturn':
-- 'StandardReturnHeader': 'result': 'negative': 'diagnostic':
-- 'Diagnostic': 'diagnosticExtension': 'startDiagnosticExt':
-- 'StartDiagnosticExt': 'startDiagnosticExtExtension': 'bddStartDiagExt':
-- 'BuffDataDelStartDiagnosticExt' in F3.7 except
-- 'buffDataDelStartDiagnosticExtExtension'.
BuffDataDelStartDiagnosticExt ::= CHOICE
{ missingTimeValue [1] AdditionalText
, invalidStartGenerationTime [2] AdditionalText
, invalidStopGenerationTime [3] AdditionalText
, inconsistentTime [4] AdditionalText
, buffDataDelStartDiagnosticExtExtension [100] Embedded
}

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page F-28 February 2021

bddStartDiagExt OBJECT IDENTIFIER ::= {bddExtProcedureParam 2}

-- *****
-- STOP Invocation
-- The STOP invocation is not extended; that is, 'StopInvocation':
-- 'stopInvocationExtension' shall be set to 'notUsed'.

-- STOP return
-- The STOP positive return does not extend StopReturn; that is, 'StopReturn':
-- 'StandardReturnHeader': 'result': 'positive' shall be set to 'notUsed'.
-- The STOP negative return does not extend StopReturn; that is, 'StopReturn':
-- 'StandardReturnHeader': 'result': 'negative': 'negExtension' shall be
-- set to 'notUsed'.
-- The STOP negative return makes use of one of the common diagnostics
-- of 'StandardReturnHeader': 'result': 'negative': 'diagnostic':
-- 'Diagnostic' (see 3.3.2.7 and F3.3) except 'diagnosticExtension'.

-- NOTIFY:
-- The NotifyInvocation type is defined in F3.4.
-- NOTIFY invocation extension:
-- This procedure defines the additional eventName values 'data discarded due to
-- excessive backlog', 'bdd recording buffer overflow', 'end of data' and
-- 'buffered data delivery configuration change'(see
-- 4.5.4.2.2.1). The associated Published Identifiers are
-- pBDDdataDiscardedExcessBacklog, pBDDrecordingBufferOverflow,
-- pBDDendOfData, and pBDDconfigurationChange, as defined in F3.16).
-- No other extension is specified; that is, 'notifyInvocationExtension' shall
-- be set to 'notUsed'.

-- TRANSFER-DATA Invocation
-- The TRANSFER-DATA invocation is not extended; that is,
-- 'TransferDataInvocation': 'transferDataInvocationExtension' shall be set
-- to 'notUsed'.

END

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page F-29 February 2021

F3.8 PROCEDURE — DATA PROCESSING PDUS

CCSDS-CSTS-DATA-PROCESSING-PDUS
{ iso(1) identified-organization(3) standards-producing-organization(112) ccsds(4)

css(4) csts(1) framework(1) modules(1) dataProcessingPdus(8) version(1)
}

DEFINITIONS
IMPLICIT TAGS
::= BEGIN

-- Main PDU exported to allow possible extension by derived procedures
EXPORTS DataProcessingPdu
;

IMPORTS DataUnitId
, Embedded
, Extended
, ProductionStatus
, Time
 FROM CCSDS-CSTS-COMMON-TYPES

 dpExtProcedureParam
 FROM CCSDS-CSTS-OBJECT-IDENTIFIERS

 CstsFrameworkPdu
 FROM CCSDS-CSTS-PDUS
;

-- ===
-- The first part of the module definition defines the PDU containing
-- the operations used by the Data Processing procedure.
-- ===
DataProcessingPdu ::= CstsFrameworkPdu (WITH COMPONENTS
 { startInvocation
 , startReturn
 , stopInvocation
 , stopReturn
 , processDataInvocation
 , notifyInvocation
 }
)

-- ===
-- The second part of the module defines the operations
-- of the Data Processing procedure.
-- ===
-- All operations are defined in the module
-- CCSDS-CSTS-COMMON-OPERATIONS-PDUS (see F3.4)

-- ===
-- The third part contains the types used by the operations
-- defined in the second part.
-- ===
-- This procedure does not have specific definition.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page F-30 February 2021

-- ===
-- The fourth part of the module definition contains the Extended
-- types used by the operations defined in the second part.
-- ===

-- *****
-- START Invocation
-- The START invocation is not extended; that is, 'StartInvocation':
-- 'startInvocationExtension' shall be set to 'notUsed'.

-- START return
-- The START positive return does not extend StartReturn; that is,
-- 'StartReturn': 'StandardReturnHeader': 'result': 'positive' shall be set
-- to 'notUsed'.
-- The START negative return does not extend StartReturn; that is,
-- 'StartReturn': 'StandardReturnHeader': 'result': 'negative':
-- 'negExtension' shall be set to 'notUsed'.
-- The START negative return makes use of: (a) one of the common
-- diagnostics of 'StandardReturnHeader': 'result': 'negative':
-- 'diagnostic': 'Diagnostic' (see 3.3.2.7 and F3.3) except
-- 'diagnosticExtension'; or (b) one of the additional values specified by
-- 'StartReturn': 'StandardReturnHeader': 'result': 'negative':
-- 'diagnostic': 'Diagnostic': 'diagnosticExtension': 'startDiagnosticExt':
-- 'StartDiagnosticExt' in F3.4 except 'startDiagnosticExtExtension'.

-- *****
-- STOP Invocation
-- The STOP invocation is not extended; that is, 'StopInvocation':
-- 'stopInvocationExtension' shall be set to 'notUsed'.

-- STOP return
-- The STOP positive return does not extend StopReturn; that is, 'StopReturn':
-- 'StandardReturnHeader': 'result': 'positive' shall be set to 'notUsed'.
-- The STOP negative return does not extend StopReturn; that is, 'StopReturn':
-- 'StandardReturnHeader': 'result': 'negative': 'negExtension' shall be
-- set to 'notUsed'.
-- The STOP negative return makes use of one of the common diagnostics
-- of 'StandardReturnHeader': 'result': 'negative': 'diagnostic':
-- 'Diagnostic' (see 3.3.2.7 and F3.3) except 'diagnosticExtension'.

-- *****
-- PROCESS-DATA Invocation
-- The PROCESS-DATA invocation is extended with the additional parameter
-- 'processCompletionReport'. This extension is defined by
-- 'ProcessDataInvocation': 'processDataInvocationExtension':
-- 'dpProcDataInvocExt': 'DataProcProcDataInvocExt':
-- 'processCompletionReport'. No further parameters are added; that is,
-- 'ProcessDataInvocation': 'processDataInvocationExtension':
-- 'dpProcDataInvocExt': 'DataProcProcDataInvocExt':
-- 'dataProcProcDataInvocExtExtension' shall be set to 'notUsed'.
DataProcProcDataInvocExt ::= SEQUENCE
{ processCompletionReport CHOICE
 { doNotProduceReport [0] NULL
 , produceReport [1] NULL
 }
, dataProcProcDataInvocExtExtension Extended
}

dpProcDataInvocExt OBJECT IDENTIFIER ::= {dpExtProcedureParam 1}

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page F-31 February 2021

-- *****
-- NOTIFY:
-- The NotifyInvocation type is defined in F3.4.
-- NOTIFY invocation extension:
-- This procedure defines the additional eventName values 'data processing
-- completed' and 'data processing configuration change'(see 4.6.4.2.3).
-- The associated Published Identifiers are pDPdataProcessingCompleted and
-- pDPconfigurationChange, as defined in F3.16).
-- The NOTIFY invocation is extended with the additional parameters
-- 'dataUnitIdLastProcessed', 'dataUnitIdLastOk', and 'productionStatus'.
-- This extension is defined by 'NotifyInvocation':
-- 'notifyInvocationExtension': 'dpNotifyInvocExt':
-- 'DataProcNotifyInvocExt'. No further parameters are added; that is,
-- 'NotifyInvocation': 'notifyInvocationExtension': 'dpNotifyInvocExt':
-- 'DataProcNotifyInvocExt': 'dataProcNotifyInvocExtExtension' shall be set
-- to 'notUsed'. No additional values of the 'dataProcessingSstatus'
-- parameter are defined; that is, 'NotifyInvocation':
-- 'notifyInvocationExtension': 'dpNotifyInvocExt':
-- 'DataProcNotifyInvocExt': 'dataUnitIdLastProcessed':
-- 'dataUnitLastProcessed': 'dataProcessingStatus' must not be set to
-- 'dataProcessingStatusExtension'.
DataProcNotifyInvocExt ::= SEQUENCE
{ dataUnitIdLastProcessed CHOICE
 { noDataProcessed [0] NULL
 , dataUnitLastProcessed [1] SEQUENCE
 { lastProcessedDataUnitId DataUnitId
 , dataProcessingStatus CHOICE
 { successfullyProcessed [0] DataProcessingStartTime
 , processingInterrupted [1] DataProcessingStartTime
 , processingStarted [2] DataProcessingStartTime
 , dataProcessingStatusExtension [100] Embedded
 }
 }
 }
, dataUnitIdLastOk CHOICE
 { noSuccessfulProcessing [0] NULL
 , dataUnitLastOk [1] SEQUENCE
 { lastOkdataUnitId DataUnitId
 , dataProcessingStopTime Time
 }
 }
, productionStatus CHOICE
 { productionStatusChange [0] NULL
 , anyOtherEvent [1] ProductionStatus
 }
, dataProcNotifyInvocExtExtension Extended
}

dpNotifyInvocExt OBJECT IDENTIFIER ::= {dpExtProcedureParam 2}

-- The following type is not an extension but a type used by
-- DataProcNotifyInvocExt
DataProcessingStartTime ::= Time

END

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page F-32 February 2021

F3.9 PROCEDURE — BUFFERED DATA PROCESSING PDUS

CCSDS-CSTS-BUFFERED-DATA-PROCESSING-PDUS
{ iso(1) identified-organization(3) standards-producing-organization(112) ccsds(4)

css(4) csts(1) framework(1) modules(1) bufferedDataProcessingPdus(9) version(2)
}

DEFINITIONS
IMPLICIT TAGS
::= BEGIN

-- Main PDU exported to allow possible extension by derived procedures
EXPORTS BufferedDataProcessingPdu
, ForwardBuffer
;

IMPORTS DataProcessingPdu
 FROM CCSDS-CSTS-DATA-PROCESSING-PDUS

 ProcessDataInvocation
 FROM CCSDS-CSTS-COMMON-OPERATIONS-PDUS;

-- ===
-- The first part of the module definition defines the PDU containing
-- the operations used by the Buffered Data Processing procedure.
-- ===
-- The Buffered Data Processing procedure is derived from the
-- Data Processing procedure. Its PDU is cast as the type of the PDU
-- defined in the Data Processing procedure: DataProcessingPdu type defined
-- in F3.8.
BufferedDataProcessingPdu ::= DataProcessingPdu

-- The Buffered Data Processing Procedure uses an additional diagnostic
-- passed to the Association Contol Procedure in case a too large Transfer
-- Buffer PDU is receceived. The diagnostic value 70 shall signify
-- 'forward buffer too large'.
-- ===
-- The second part of the module defines the operations
-- of the Data Processing procedure.
-- ===
-- All operations are defined in the module
-- CCSDS-CSTS-COMMON-OPERATIONS-PDUS (see F3.4)

-- ===
-- The third part contains the types used by the operations
-- defined in the second part.
-- ===

ForwardBuffer ::= SEQUENCE OF ProcessDataInvocation

-- ===
-- The fourth part of the module definition contains the Extended
-- types used by the operations defined in the second part.
-- ===

-- *****
-- START invocation
-- The START invocation is not extended; that is, 'StartInvocation':
-- 'startInvocationExtension' shall be set to 'notUsed'.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page F-33 February 2021

-- START return
-- The START positive return does not extend StartReturn; that is,
-- 'StartReturn': 'StandardReturnHeader': 'result': 'positive' shall be set
-- to 'notUsed'.
-- The START negative return does not extend StartReturn; that is,
-- 'StartReturn': 'StandardReturnHeader': 'result': 'negative':
-- 'negExtension' shall be set to 'notUsed'.
-- The START negative return makes use of: (a) one of the common
-- diagnostics of 'StandardReturnHeader': 'result': 'negative':
-- 'diagnostic': 'Diagnostic' (see 3.3.2.7 and F3.3) except
-- 'diagnosticExtension'; or (b) one of the additional values specified by
-- 'StartReturn': 'StandardReturnHeader': 'result': 'negative':
-- 'diagnostic': 'Diagnostic': 'diagnosticExtension': 'startDiagnosticExt':
-- 'StartDiagnosticExt' in F3.4 except 'startDiagnosticExtExtension'.

-- *****
-- STOP invocation
-- The STOP invocation is not extended; that is, 'StopInvocation':
-- 'stopInvocationExtension' shall be set to 'notUsed'.

-- STOP return
-- The STOP positive return does not extend StopReturn; that is, 'StopReturn':
-- 'StandardReturnHeader': 'result': 'positive' shall be set to 'notUsed'.
-- The STOP negative return does not extend StopReturn; that is, 'StopReturn':
-- 'StandardReturnHeader': 'result': 'negative': 'negExtension' shall be
-- set to 'notUsed'.
-- The STOP negative return makes use of one of the common diagnostics
-- of 'StandardReturnHeader': 'result': 'negative': 'diagnostic':
-- 'Diagnostic' (see 3.3.2.7 and F3.3) except 'diagnosticExtension'.

-- *****
-- PROCESS-DATA Invocation
-- The PROCESS-DATA invocation is extended with the additional parameter
-- 'processCompletionReport'. This extension is defined by
-- 'ProcessDataInvocation': 'processDataInvocationExtension':
-- 'dpProcDataInvocExt': 'DataProcProcDataInvocExt':
-- 'processCompletionReport' inherited from the parent Data Processing
-- procedure. No further extension is defined; that is,
-- 'ProcessDataInvocation': 'processDataInvocationExtension':
-- 'dpProcDataInvocExt': 'DataProcProcDataInvocExt':
-- 'dataProcProcDataInvocExtExtension' shall be set to 'notUsed'.

-- *****
-- NOTIFY Invocation
-- The extension of the NOTIFY invocation is inherited from the Data
-- Processing procedure. The extension is defined in F3.8.

END

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page F-34 February 2021

F3.10 PROCEDURE — SEQUENCE-CONTROLLED DATA PROCESSING PDUS

CCSDS-CSTS-SEQUENCE-CONTROLLED-DATA-PROCESSING-PDUS
{ iso(1) identified-organization(3) standards-producing-organization(112) ccsds(4)
 css(4) csts(1) framework(1) modules(1) sequenceControlledDataProcessingPdus(10)
 version(1)
}

DEFINITIONS
IMPLICIT TAGS
::= BEGIN

-- Main PDU exported to allow possible extension by derived procedures
EXPORTS SequContrDataProcessingPdu
;

IMPORTS ConditionalTime
, DataUnitId
, Embedded
, Extended
 FROM CCSDS-CSTS-COMMON-TYPES

 scdpExtProcedureParam
 FROM CCSDS-CSTS-OBJECT-IDENTIFIERS

 CstsFrameworkPdu
 FROM CCSDS-CSTS-PDUS
;

-- ===
-- The first part of the module definition defines the PDU containing
-- the operations used by the Sequence-Controlled Data Processing
-- procedure.
-- ===
SequContrDataProcessingPdu ::= CstsFrameworkPdu (WITH COMPONENTS
 { startInvocation
 , startReturn
 , stopInvocation
 , stopReturn
 , processDataInvocation
 , processDataReturn
 , notifyInvocation
 , executeDirectiveInvocation
 , executeDirectiveAcknowledge
 , executeDirectiveReturn
 }
)

-- ===
-- The second part of the module defines the operations
-- of the Data Processing procedure.
-- ===
-- All operations are defined in the module
-- CCSDS-CSTS-COMMON-OPERATIONS-PDUS (see F3.4).

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page F-35 February 2021

-- ===
-- The third part contains the types used by the operations
-- defined in the second part.
-- ===
-- This procedure does not have specific definitions.

-- ===
-- The fourth part of the module definition contains the Extended
-- types used by the operations defined in the second part.
-- ===

-- *****
-- START Invocation
-- The START invocation is extended with the additional parameter
-- 'firstDataUnitId'. This extension is defined by 'StartInvocation':
-- 'startInvocationExtension': 'scdpStartInvocExt':
-- 'SequContrDataProcStartInvocExt'. No further parameters are added; that is,
-- 'StartInvocation': 'startInvocationExtension': 'scdpStartInvocExt':
-- 'SequContrDataProcStartInvocExt':
-- 'sequContrDataProcStartInvocExtExtension' shall be set to 'notUsed'.
SequContrDataProcStartInvocExt ::= SEQUENCE
{ firstDataUnitId DataUnitId
, sequContrDataProcStartInvocExtExtension Extended
}

scdpStartInvocExt OBJECT IDENTIFIER ::= {scdpExtProcedureParam 1}

-- START return
-- The START positive return does not extend StartReturn; that is,
-- 'StartReturn': 'StandardReturnHeader': 'result': 'positive' shall be set
-- to 'notUsed'.
-- The START negative return does not extend StartReturn; that is,
-- 'StartReturn': 'StandardReturnHeader': 'result': 'negative':
-- 'negExtension' shall be set to 'notUsed'.
-- The START negative return makes use of: (a) one of the common
-- diagnostics of 'StandardReturnHeader': 'result': 'negative':
-- 'diagnostic': 'Diagnostic' (see 3.3.2.7 and F3.3) except
-- 'diagnosticExtension'; or (b) one of the additional values specified by
-- 'StartReturn': 'StandardReturnHeader': 'result': 'negative':
-- 'diagnostic': 'Diagnostic': 'diagnosticExtension': 'startDiagnosticExt':
-- 'StartDiagnosticExt' in F3.4 except 'startDiagnosticExtExtension'.

-- *****
-- STOP Invocation
-- The STOP invocation is not extended; that is, 'StopInvocation':
-- 'stopInvocationExtension' shall be set to 'notUsed'.

-- STOP return
-- The STOP positive return does not extend StopReturn; that is, 'StopReturn':
-- 'StandardReturnHeader': 'result': 'positive' shall be set to 'notUsed'.
-- The STOP negative return does not extend StopReturn; that is, 'StopReturn':
-- 'StandardReturnHeader': 'result': 'negative': 'negExtension' shall be
-- set to 'notUsed'.
-- The STOP negative return makes use of one of the common diagnostics
-- of 'StandardReturnHeader': 'result': 'negative': 'diagnostic':
-- 'Diagnostic' (see 3.3.2.7 and F3.3) except 'diagnosticExtension'.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page F-36 February 2021

-- *****
-- PROCESS-DATA Invocation
-- The PROCESS-DATA invocation is extended with the additional parameter
-- 'processCompletionReport' inherited from the parent Data Processing
-- procedure. This extension is defined in F3.8. The PROCESS-DATA
-- invocation is further extended with the parameters
-- 'earliestDataProcessingTime' and 'latestDataProcessingTime' defined by
-- 'ProcessDataInvocation': 'processDataInvocationExtension':
-- 'dpProcDataInvocExt': 'DataProcProcDataInvocExt':
-- 'dataProcProcDataInvocExtExtension': 'scdpProcDataInvocExt':
-- 'SequContrDataProcProcDataInvocExt'. No further parameters are added to
-- the PROCESS-DATA invocation; that is, 'ProcessDataInvocation':
-- 'processDataInvocationExtension': 'dpProcDataInvocExt':
-- 'DataProcProcDataInvocExt': 'dataProcProcDataInvocExtExtension':
-- 'scdpProcDataInvocExt': 'SequContrDataProcProcDataInvocExt':
-- 'sequContrDataProcDataInvocExtExtension' shall be set to 'notUsed'.
SequContrDataProcProcDataInvocExt ::= SEQUENCE
{ earliestDataProcessingTime ConditionalTime
, latestDataProcessingTime ConditionalTime
, sequContrDataProcDataInvocExtExtension Extended
}

scdpProcDataInvocExt OBJECT IDENTIFIER ::= {scdpExtProcedureParam 2}

-- *****
-- PROCESS-DATA positive return
-- The PROCESS-DATA positive return extends ProcessDataReturn defined below
-- by adding the parameter 'dataUnitId'. This extension is
-- defined by 'ProcessDataReturn': 'StandardReturnHeader': 'result':
-- 'positive': 'scdpProcDataPosReturnExt':
-- 'SequContrDataProcProcDataPosReturnExt'. No further parameters are added
-- to the PDU; that is, 'ProcessDataReturn': 'StandardReturnHeader': 'result':
-- 'positive': 'scdpProcDataPosReturnExt':
-- 'SequContrDataProcProcDataPosReturnExt':
-- 'sequContrDataProcProcDataPosReturnExtExtension' shall be set to
-- 'notUsed'.

SequContrDataProcProcDataPosReturnExt ::= SEQUENCE
{ dataUnitIdPosRtn DataUnitId
, sequContrDataProcProcDataPosReturnExtExtension Extended
}

scdpProcDataPosReturnExt OBJECT IDENTIFIER ::= {scdpExtProcedureParam 3}

-- The PROCESS-DATA negative return extends ProcessDataReturn by adding the
-- parameter 'dataUnitId'. This extension is defined by
-- 'ProcessDataReturn': 'StandardReturnHeader': 'result': 'negative':
-- 'negExtension': 'scdpProcDataNegReturnExt':
-- 'SequContrDataProcProcDataNegReturnExt'. No further parameters are added
-- to the ProcessDataReturn; that is, 'ProcessDataReturn':
-- 'StandardReturnHeader': 'result': 'negative': 'negExtension':
-- 'scdpProcDataNegReturnExt': 'SequContrDataProcProcDataNegReturnExt':
-- 'sequContrDataProcProcDataNegReturnExtExtension'shall be set to
-- 'notUsed'.
SequContrDataProcProcDataNegReturnExt ::= SEQUENCE
{ dataUnitIdNegRtn DataUnitId
, sequContrDataProcProcDataNegReturnExtExtension Extended
}

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page F-37 February 2021

scdpProcDataNegReturnExt OBJECT IDENTIFIER ::= {scdpExtProcedureParam 5}

-- The PROCESS-DATA negative return makes use of: (a) one of the common
-- diagnostics of 'StandardReturnHeader': 'result': 'negative':
-- 'diagnostic': 'Diagnostic' (see 3.3.2.7 and F3.3) except
-- 'diagnosticExtension'; or (b) one of the additional diagnostics defined
-- by 'ProcessDataReturn': 'StandardReturnHeader': 'result': 'negative':
-- 'diagnostic': 'Diagnostic': 'diagnosticExtension':
-- 'scdpProcDataDiagExt': 'SequContrDataProcProcDataDiagnosticExt' in F3.10
-- except 'sequContrDataProcProcDataDiagnosticExtExtension'.
SequContrDataProcProcDataDiagnosticExt ::= CHOICE
{ unableToProcess [0] NULL
, serviceInstanceLocked [1] NULL
, outOfSequence [2] NULL
, inconsistentTimeRange [3] NULL
, invalidTime [4] NULL
, lateData [5] NULL
, dataError [6] NULL
, unableToStore [7] NULL
, sequContrDataProcProcDataDiagnosticExtExtension [100] Embedded
}

scdpProcDataDiagExt OBJECT IDENTIFIER ::= {scdpExtProcedureParam 4}

-- *****
-- NOTIFY:
-- The NotifyInvocation type is defined in F3.4.
-- NOTIFY invocation extension:
-- This procedure defines the additional eventName values 'expired' and
-- 'locked' (see 4.8.4.3.4). The associated Published Identifiers are
-- pSCDPexpired and pSCDPlocked as defined in F3.16.

-- Further NOTIFY invocation extensions are inherited from the parent Data
-- Processing procedure. These extensions are defined in F3.8. Additional
-- values of the processing-status parameter are introduced by means of the
-- extension 'NotifyInvocation': 'notifyInvocationExtension':
-- 'dpNotifyInvocExt': 'DataProcNotifyInvocExt': 'dataUnitIdLastProcessed':
-- 'dataUnitLastProcessed': 'dataProcessingStatus':
-- 'dataProcessingStatusExtension': 'scdpNotifyProcStatusExt':
-- 'SequContrDataProcStatus'. No further processing-status values are
-- added; that is, 'NotifyInvocation': 'notifyInvocationExtension':
-- 'dpNotifyInvocExt': 'DataProcNotifyInvocExt': 'dataUnitIdLastProcessed':
-- 'dataUnitLastProcessed': 'dataProcessingStatus':
-- 'dataProcessingStatusExtension': 'scdpNotifyProcStatusExt':
-- 'SequContrDataProcStatus' must not be set to
-- 'sequContrDataProcStatusExtension'.
SequContrDataProcStatus ::= CHOICE
{ expired [0] NULL
, processingNotStarted [1] NULL
, sequContrDataProcStatusExtension [100] Embedded
}

scdpNotifyProcStatusExt OBJECT IDENTIFIER ::= {scdpExtProcedureParam 6}

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page F-38 February 2021

-- *****
-- EXECUTE-DIRECTIVE invocation
-- In the EXECUTE-DIRECTIVE invocation the parameter directive-identifier
-- shall be set to 'reset'; that is, 'ExecuteDirectiveInvocation':
-- 'directiveIdentifier' shall be set to the Published Identifier
-- {pSCDPdirectivesId 1}.
-- The directive-qualifier parameter is defined by
-- 'ExecuteDirectiveInvocation': 'directiveQualifier':
-- 'localProcDirQualifier': 'DirectiveQualifierValues':
-- 'parameterlessValues':
-- 'TypeAndValue': 'Embedded': 'EMBEDDED PDV'. OID and type of this parameter are
-- pSCDPdataUnitId and PSCDPdataUnitIdType, respectively (see F3.16).
-- The 'directiveQualifier' parameter is not extended and must therefore not be set to
-- 'directiveQualifierExtension'.

-- The EXECUTE-DIRECTIVE invocation is not extended; that is,
-- 'ExecuteDirectiveInvocation': 'execute DirectiveInvocationExtension'
-- shall be set to 'notUsed'.

-- EXECUTE-DIRECTIVE acknowledgement
-- The EXECUTE-DIRECTIVE positive acknowledgement is not extended; that is,
-- 'ExecuteDirectiveAcknowledge': 'StandardAcknowledgeHeader':
-- 'StandardReturnHeader': 'result': 'positive' shall be set to 'notUsed'.
-- The EXECUTE-DIRECTIVE negative acknowledgement is not extended; that is,
-- 'ExecuteDirectiveAcknowledge': 'StandardAcknowledgeHeader':
-- 'StandardReturnHeader': 'result': 'negative': 'negExtension' shall be
-- set to 'notUsed'.
-- The EXECUTE-DIRECTIVE negative acknowledgement makes use of: (a) one of
-- the common diagnostics of 'StandardReturnHeader': 'result': 'negative':
-- 'diagnostic': 'Diagnostic' (see 3.3.2.7); or (b) one of the additional
-- diagnostics defined by 'ExecuteDirectiveAcknowledge':
-- 'StandardAcknowledgeHeader': 'StandardReturnHeader': 'result':
-- 'negative': 'diagnostic': 'Diagnostic': 'diagnosticExtension':
-- 'execDirAckDiagExt': 'ExecDirNegAckDiagnosticExt'. No further
-- diagnostics are specified; that is, 'ExecuteDirectiveAcknowledge':
-- 'StandardAcknowledgeHeader': 'StandardReturnHeader': 'result':
-- 'negative': 'diagnostic': 'Diagnostic': 'diagnosticExtension':
-- 'execDirAckDiagExt': 'ExecDirNegAckDiagnosticExt' must not be set to
-- 'execDirNegAckDiagnosticExtExtension'.

-- EXECUTE-DIRECTIVE return
-- The EXECUTE-DIRECTIVE positive return is not extended; that is,
-- 'ExecuteDirectiveReturn': 'StandardReturnHeader': 'result': 'positive'
-- shall be set to 'notUsed'.
-- The EXECUTE-DIRECTIVE negative return is not extended; that is,
-- 'ExecuteDirectiveReturn': 'StandardReturnHeader': 'result': 'negative':
-- 'negExtension' shall be set to 'notUsed'.
-- The EXECUTE-DIRECTIVE negative return makes use of: (a) one of the
-- common diagnostics of 'StandardReturnHeader': 'result': 'negative':
-- 'diagnostic': 'Diagnostic' (see 3.3.2.7 and F3.3) except
-- 'diagnosticExtension'; or (b) one of the additional diagnostics defined
-- by 'ExecuteDirectiveReturn': 'StandardReturnHeader': 'result':
-- 'negative': 'diagnostic': 'Diagnostic': 'diagnosticExtension':
-- 'execDirNegReturnDiagnosticExt': 'ExecDirNegReturnDiagnosticExt'in F3.4
-- except 'execDirNegReturnDiagnosticExtExtension'.

END

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page F-39 February 2021

F3.11 PROCEDURE — INFORMATION QUERY PDUS

CCSDS-CSTS-INFORMATION-QUERY-PDUS
{ iso(1) identified-organization(3) standards-producing-organization(112)
 ccsds(4) css(4) csts(1) framework(1) modules(1) informationQueryPdus(11)
 version(1)
}

DEFINITIONS
IMPLICIT TAGS
::= BEGIN

-- Main PDU exported to allow possible extension by derived procedures
EXPORTS InformationQueryPdu
;

IMPORTS CstsFrameworkPdu
 FROM CCSDS-CSTS-PDUS
;

-- ===
-- The first part of the module definition defines the PDU containing
-- the operations used by the Information Query procedure.
-- ===
InformationQueryPdu ::= CstsFrameworkPdu (WITH COMPONENTS
 { getInvocation
 , getReturn
 }
)

-- ===
-- The second part of the module defines the operations
-- of the Information Query procedure.
-- ===
-- All operations are defined in the module
-- CCSDS-CSTS-COMMON-OPERATIONS-PDUS (see F3.4)

-- ===
-- The third part contains the types used by the operations
-- defined in the second part.
-- ===
-- This procedure does not have specific definitions.

-- ===
-- The fourth part of the module definition contains the Extended
-- types used by the operations defined in the second part.
-- ===
-- This procedure does not have specific extensions.

END

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page F-40 February 2021

F3.12 PROCEDURE — CYCLIC REPORT PDUS

CCSDS-CSTS-CYCLIC-REPORT-PDUS
{ iso(1) identified-organization(3) standards-producing-organization(112)
 ccsds(4) css(4) csts(1) framework(1) modules(1) cyclicReportPdus(12) version(2)
}

DEFINITIONS
IMPLICIT TAGS
::= BEGIN

-- Main PDU exported to allow possible extension by derived procedures
EXPORTS CyclicReportPdu
;

IMPORTS AdditionalText
, Embedded
, Extended
, IntPos
, ListOfParametersEvents
, ListOfParamEventsDiagnostics
, QualifiedParameter
 FROM CCSDS-CSTS-COMMON-TYPES

 UnbufferedDataDeliveryPdu
 FROM CCSDS-CSTS-UNBUFFERED-DATA-DELIVERY-PDUS

 crExtProcedureParam
 FROM CCSDS-CSTS-OBJECT-IDENTIFIERS
;

-- ===
-- The first part of the module definition defines the PDU containing
-- the operations used by the Cyclic Report procedure.
-- ===
-- The Cyclic Report procedure is derived from the Unbuffered Data
-- Delivery procedure. Its PDU is cast as the type of the PDU defined in
-- the Unbuffered Data Delivery procedure: UnbufferedDataDeliveryPdu type
-- defined in F3.6.

CyclicReportPdu ::= UnbufferedDataDeliveryPdu

-- ===
-- The second part of the module defines the operations
-- of the Cyclic Report procedure.
-- ===
-- All operations are defined in the module
-- CCSDS-CSTS-COMMON-OPERATIONS-PDUS (see F3.4)

-- ===
-- The third part contains the types used by the operations
-- defined in the second part.
-- ===
-- This procedure does not have specific definitions.

-- ===
-- The fourth part of the module definition contains the Extended
-- types used by the operations defined in the second part.
-- ===

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page F-41 February 2021

-- *****
-- START Invocation
-- The START invocation is extended with the additional parameters
-- 'deliveryCycle' and 'listOfParameters'. This extension is defined by
-- 'StartInvocation': 'startInvocationExtension': 'crStartInvocExt':
-- 'CyclicReportStartInvocExt'. No further parameters are added to
-- StartInvocation; that is, 'StartInvocation': 'startInvocationExtension':
-- 'crStartInvocExt': 'CyclicReportStartInvocExt':
-- 'cyclicReportStartInvocExtExtension' shall be set to 'notUsed'.
CyclicReportStartInvocExt ::= SEQUENCE
{ deliveryCycle IntPos
, listOfParameters ListOfParametersEvents
, cyclicReportStartInvocExtExtension Extended
}

crStartInvocExt OBJECT IDENTIFIER ::= {crExtProcedureParam 1}

-- START return
-- The START positive return does not extend StartReturn; that is,
-- 'StartReturn': 'StandardReturnHeader': 'result': 'positive' shall be set
-- to 'notUsed'.
-- The START negative return does not extend StartReturn; that is,
-- 'StartReturn': 'StandardReturnHeader': 'result': 'negative':
-- 'negExtension' shall be set to 'notUsed'.
-- The START negative return makes use of: (a) one of the common
-- diagnostics of 'StandardReturnHeader': 'result': 'negative':
-- 'diagnostic': 'Diagnostic' (see 3.3.2.7 and F3.3) except
-- 'diagnosticExtension'; (b) one of the additional
-- diagnostics defined by 'StartReturn': 'StandardReturnHeader': 'result':
-- 'negative': 'diagnostic': 'Diagnostic': 'diagnosticExtension':
-- 'startDiagnosticExt': 'StartDiagnosticExt' in F3.4 except
-- 'startDiagnosticExtExtension'; or (c) one of the additional
-- diagnostics defined by 'StartReturn': 'StandardReturnHeader': 'result':
-- 'negative': 'diagnostic': 'Diagnostic': 'diagnosticExtension':
-- 'startDiagnosticExt': 'StartDiagnosticExt':
-- 'startDiagnosticExtExtension': 'crStartDiagExt':
-- 'CyclicReportStartDiagnosticExt' in F3.12 except
-- 'cyclicReportStartDiagnosticExtExtension'.
CyclicReportStartDiagnosticExt ::= CHOICE
{ common [0] ListOfParamEventsDiagnostics
, outOfRange [1] AdditionalText
, cyclicReportStartDiagnosticExtExtension [100] Embedded
}

crStartDiagExt OBJECT IDENTIFIER ::= {crExtProcedureParam 2}

-- *****
-- STOP Invocation
-- The STOP invocation is not extended; that is, 'StopInvocation':
-- 'stopInvocationExtension' shall be set to 'notUsed'.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page F-42 February 2021

-- STOP return
-- The STOP positive return does not extend StopReturn; that is, 'StopReturn':
-- 'StandardReturnHeader': 'result': 'positive' shall be set to 'notUsed'.
-- The STOP negative return does not extend StopReturn; that is, 'StopReturn':
-- 'StandardReturnHeader': 'result': 'negative': 'negExtension' shall be
-- set to 'notUsed'.
-- The STOP negative return makes use of one of the common diagnostics
-- of 'StandardReturnHeader': 'result': 'negative': 'diagnostic':
-- 'Diagnostic' (see 3.3.2.7 and F3.3) except 'diagnosticExtension'.

-- *****
-- TRANSFER-DATA invocation
-- The TRANSFER-DATA invocation is not extended; that is,
-- 'TransferDataInvocation': 'transferDataInvocationExtension' shall be set
-- to 'notUsed'.
-- The TRANSFER-DATA invocation parameter data is refined to carry
-- the list-of-parameters-values information and is therefore defined as
-- follows: 'TransferDataInvocation': 'data': 'AbstractChoice':
-- 'extendedData': 'crTransferDataInvocDataRef':
-- 'CyclicReportTransferDataInvocDataRef'. 'TransferDataInvocation':
-- 'data': 'AbstractChoice': 'extendedData': 'crTransferDataInvocDataRef':
-- 'CyclicReportTransferDataInvocDataRef':
-- 'cyclicReportTransferDataInvocDataRefExtension' shall be set to
-- 'notUsed'.
CyclicReportTransferDataInvocDataRef ::= SEQUENCE
{ qualifiedParameters SEQUENCE OF QualifiedParameter
, cyclicReportTransferDataInvocDataRefExtension Extended
}

crTransferDataInvocDataRef OBJECT IDENTIFIER ::= {crExtProcedureParam 3}

END

F3.13 PROCEDURE — NOTIFICATION PDUS

CCSDS-CSTS-NOTIFICATION-PDUS
{ iso(1) identified-organization(3) standards-producing-organization(112)
 ccsds(4) css(4) csts(1) framework(1) modules(1) notificationPdus(13)
 version(1)
}

DEFINITIONS
IMPLICIT TAGS
::= BEGIN

-- Main PDU exported to allow possible extension by derived procedures
EXPORTS NotificationPdu
;

IMPORTS Embedded
, Extended
, ListOfParametersEvents
, ListOfParamEventsDiagnostics
 FROM CCSDS-CSTS-COMMON-TYPES

 nExtProcedureParam
 FROM CCSDS-CSTS-OBJECT-IDENTIFIERS

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page F-43 February 2021

 CstsFrameworkPdu
 FROM CCSDS-CSTS-PDUS
;

-- ===
-- The first part of the module definition defines the PDU containing
-- the operations used by the Notification procedure.
-- ===
NotificationPdu ::= CstsFrameworkPdu (WITH COMPONENTS
 { startInvocation
 , startReturn
 , stopInvocation
 , stopReturn
 , notifyInvocation
 }
)

-- ===
-- The second part of the module defines the operations
-- of the Notification procedure.
-- ===
-- All operations are defined in the module
-- CCSDS-CSTS-COMMON-OPERATIONS-PDUS (see F3.4)

-- ===
-- The third part contains the types used by the operations
-- defined in the second part.
-- ===
-- This procedure does not have specific definitions.

-- ===
-- The fourth part of the module definition contains the Extended
-- types used by the operations defined in the second part.
-- ===

-- *****
-- START Invocation
-- The START invocation is extended with the additional parameter
-- 'listOfEvents' specifying the events that shall be notified. This
-- extension is defined by 'StartInvocation': 'startInvocationExtension':
-- 'nStartInvocExt': 'NotificationStartInvocExt'. No further parameters are
-- added to StartInvocation; that is, 'StartInvocation':
-- 'startInvocationExtension': 'nStartInvocExt':
-- 'NotificationStartInvocExt': 'notificationStartInvocExtExtension' shall
-- be set to 'notUsed'.
NotificationStartInvocExt ::= SEQUENCE
{ listOfEvents ListOfParametersEvents
, notificationStartInvocExtExtension Extended
}

nStartInvocExt OBJECT IDENTIFIER ::= {nExtProcedureParam 1}

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page F-44 February 2021

-- START return
-- The START positive return does not extend StartReturn; that is,
-- 'StartReturn': 'StandardReturnHeader': 'result': 'positive' shall be set
-- to 'notUsed'.
-- The START negative return does not extend StartReturn; that is,
-- 'StartReturn': 'StandardReturnHeader': 'result': 'negative':
-- 'negExtension' shall be set to 'notUsed'.
-- The START negative return makes use of: (a) one of the common
-- diagnostics of 'StandardReturnHeader': 'result': 'negative':
-- 'diagnostic': 'Diagnostic' (see 3.3.2.7 and F3.3) except
-- 'diagnosticExtension'; (b) one of the additional diagnostics defined
-- by 'StartReturn': 'StandardReturnHeader': 'result': 'negative':
-- 'diagnostic': 'Diagnostic': 'diagnosticExtension': 'startDiagnosticExt':
-- 'StartDiagnosticExt' in F3.4 except 'startDiagnosticExtExtension'; or
-- (c) one of the additional diagnostics defined by 'StartReturn':
-- 'StandardReturnHeader': 'result': 'negative': 'diagnostic':
-- 'Diagnostic': 'diagnosticExtension': 'startDiagnosticExt':
-- 'StartDiagnosticExt': 'startDiagnosticExtExtension': 'nStartDiagExt':
-- 'NotificationStartDiagnosticExt' in F3.13 except
-- 'notificationStartDiagnosticExtExtension'.
NotificationStartDiagnosticExt ::= CHOICE
{ common [0] ListOfParamEventsDiagnostics
, notificationStartDiagnosticExtExtension [100] Embedded
}

nStartDiagExt OBJECT IDENTIFIER ::= {nExtProcedureParam 2}

-- *****
-- STOP Invocation
-- The STOP invocation is not extended; that is, 'StopInvocation':
-- 'stopInvocationExtension' shall be set to 'notUsed'.

-- STOP return
-- The STOP positive return does not extend StopReturn; that is, 'StopReturn':
-- 'StandardReturnHeader': 'result': 'positive' shall be set to 'notUsed'.
-- The STOP negative return does not extend StopReturn; that is, 'StopReturn':
-- 'StandardReturnHeader': 'result': 'negative': 'negExtension' shall be
-- set to 'notUsed'.
-- The STOP negative return makes use of one of the common diagnostics
-- of 'StandardReturnHeader': 'result': 'negative': 'diagnostic':
-- 'Diagnostic' (see 3.3.2.7 and F3.3) except 'diagnosticExtension'.

END

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page F-45 February 2021

F3.14 PROCEDURE — THROW EVENTS PDUS

CCSDS-CSTS-THROW-EVENT-PDUS
{ iso(1) identified-organization(3) standards-producing-organization(112) ccsds(4)
 css(4) csts(1) framework(1) modules(1) throwEventPdus(14) version(1)
}

DEFINITIONS
IMPLICIT TAGS
::= BEGIN

-- Main PDU exported to allow possible extension by derived procedures
EXPORTS ThrowEventPdu
;

IMPORTS Embedded
 FROM CCSDS-CSTS-COMMON-TYPES

 teExtProcedureParam
 FROM CCSDS-CSTS-OBJECT-IDENTIFIERS

 CstsFrameworkPdu
 FROM CCSDS-CSTS-PDUS
;

-- ===
-- The first part of the module definition defines the PDU containing
-- the operations used by the Throw Event procedure.
-- ===
ThrowEventPdu ::= CstsFrameworkPdu (WITH COMPONENTS
 { executeDirectiveInvocation
 , executeDirectiveAcknowledge
 , executeDirectiveReturn
 }
)

-- ===
-- The second part of the module defines the operations
-- of the Throw Event procedure.
-- ===
-- All operations are defined in the module
-- CCSDS-CSTS-COMMON-OPERATIONS-PDUS (see F3.4)

-- ===
-- The third part contains the types used by the operations
-- defined in the second part.
-- ===
-- This procedure does not have specific definition.

-- ===
-- The fourth part of the module definition contains the Extended
-- types used by the operations defined in the second part.
-- ===

-- *****
-- EXECUTE-DIRECTIVE invocation
-- The EXECUTE-DIRECTIVE invocation is not extended; that is,
-- 'ExecuteDirectiveInvocation': 'executeDirectiveInvocationExtension'
-- shall be set to 'notUsed'.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page F-46 February 2021

-- EXECUTE-DIRECTIVE acknowledgement
-- The EXECUTE-DIRECTIVE positive acknowledgement is not extended; that is,
-- 'ExecuteDirectiveAcknowledge': 'StandardAcknowledgeHeader':
-- 'StandardReturnHeader': 'result': 'positive' shall be set to 'notUsed'.
-- The EXECUTE-DIRECTIVE negative acknowledgement is not extended; that is,
-- 'ExecuteDirectiveAcknowledge': 'StandardAcknowledgeHeader':
-- 'StandardReturnHeader': 'result': 'negative': 'negExtension' shall be
-- set to 'notUsed'.
-- The EXECUTE-DIRECTIVE negative acknowledgement makes use of: (a) one of
-- the common diagnostics of 'StandardReturnHeader': 'result': 'negative':
-- 'diagnostic': 'Diagnostic' (see 3.3.2.7); or (b) one of the additional
-- diagnostics defined by 'ExecuteDirectiveAcknowledge':
-- 'StandardReturnHeader': 'result': 'negative': 'diagnostic':
-- 'Diagnostic': 'diagnosticExtension': 'execDirAckAckDiagExt':
-- 'ExecDirNegAckDiagnosticExt'. No further diagnostics are specified; that is,
'ExecuteDirectiveAcknowledge': 'StandardReturnHeader': 'result':
-- 'negative': 'diagnostic': 'Diagnostic': 'diagnosticExtension':
-- 'execDirAckAckDiagExt': 'ExecDirNegAckDiagnosticExt' must not be set to
-- 'execDirNegAckDiagnosticExtExtension'.

-- EXECUTE-DIRECTIVE return
-- The EXECUTE-DIRECTIVE positive return is not extended; that is,
-- 'ExecuteDirectiveReturn': 'StandardReturnHeader': 'result': 'positive'
-- shall be set to 'notUsed'.
-- The EXECUTE-DIRECTIVE negative return is not extended; that is,
-- 'ExecuteDirectiveReturn': 'StandardReturnHeader': 'result': 'negative':
-- 'negExtension' shall be set to 'notUsed'.
-- The EXECUTE-DIRECTIVE negative return makes use of: (a) one of the
-- common diagnostics of 'StandardReturnHeader': 'result': 'negative':
-- 'diagnostic': 'Diagnostic' (see 3.3.2.7 and F3.3) except
-- 'diagnosticExtension'; (b) one of the additional diagnostics defined
-- by 'ExecuteDirectiveReturn': 'StandardReturnHeader': 'result':
-- 'negative': 'diagnostic': 'Diagnostic': 'diagnosticExtension':
-- 'execDirNegReturnDiagnosticExt': 'ExecDirNegReturnDiagnosticExt' in F3.4
-- except 'execDirNegReturnDiagnosticExtExtension'; or (c) one of the
-- additional diagnostics defined by 'ExecuteDirectiveReturn':
-- 'StandardReturnHeader': 'result': 'negative': 'diagnostic':
-- 'Diagnostic': 'diagnosticExtension': 'execDirNegReturnDiagnosticExt':
-- 'ExecDirNegReturnDiagnosticExt':
-- 'execDirNegReturnDiagnosticExtExtension': 'teExecDirDiagExt':
-- 'TeExecDirNegReturnDiagnosticExt' in F3.14 except
-- 'teExecDirNegReturnDiagnosticExtExtension'.
TeExecDirNegReturnDiagnosticExt ::= CHOICE
{ guardConditionEvaluatedToFalse [0] NULL
, teExecDirNegReturnDiagnosticExtExtension [100] Embedded
}

teExecDirDiagExt OBJECT IDENTIFIER ::= {teExtProcedureParam 1}

END

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page F-47 February 2021

F3.15 CSTS FRAMEWORK PROTOCOL DATA UNITS

CCSDS-CSTS-PDUS
{ iso(1) identified-organization(3) standards-producing-organization(112)
 ccsds(4) css(4) csts(1) framework(1) modules(1) cstsFrameworkPdus(15)
 version(1)
}

DEFINITIONS
IMPLICIT TAGS
::= BEGIN

EXPORTS CstsFrameworkPdu
;

IMPORTS BindInvocation
, BindReturn
, PeerAbortInvocation
, UnbindInvocation
, UnbindReturn
 FROM CCSDS-CSTS-ASSOCIATION-CONTROL-TYPES

 ExecuteDirectiveAcknowledge
, ExecuteDirectiveInvocation
, ExecuteDirectiveReturn
, GetInvocation
, GetReturn
, NotifyInvocation
, ProcessDataInvocation
, ProcessDataReturn
, StartInvocation
, StartReturn
, StopInvocation
, StopReturn
, TransferDataInvocation
 FROM CCSDS-CSTS-COMMON-OPERATIONS-PDUS

 ReturnBuffer
 FROM CCSDS-CSTS-BUFFERED-DATA-DELIVERY-PDUS

 ForwardBuffer
 FROM CCSDS-CSTS-BUFFERED-DATA-PROCESSING-PDUS
;

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page F-48 February 2021

-- ===
-- The Pdu type lists all possible PDUs that can be exchanged between
-- the user and the provider.
-- ===
CstsFrameworkPdu ::= CHOICE
{ bindInvocation [0] BindInvocation
, bindReturn [1] BindReturn
, unbindInvocation [2] UnbindInvocation
, unbindReturn [3] UnbindReturn
, peerAbortInvocation [4] PeerAbortInvocation
, startInvocation [10] StartInvocation
, startReturn [11] StartReturn
, stopInvocation [20] StopInvocation
, stopReturn [21] StopReturn
, executeDirectiveInvocation [30] ExecuteDirectiveInvocation
, executeDirectiveAcknowledge [31] ExecuteDirectiveAcknowledge
, executeDirectiveReturn [32] ExecuteDirectiveReturn
, getInvocation [40] GetInvocation
, getReturn [41] GetReturn
, notifyInvocation [50] NotifyInvocation
, processDataInvocation [60] ProcessDataInvocation
, processDataReturn [61] ProcessDataReturn
, forwardBuffer [62] ForwardBuffer
, transferDataInvocation [70] TransferDataInvocation
, returnBuffer [71] ReturnBuffer
}

-- ===
-- The CstsFrameworkTopPdu is another name for CstsFrameworkPdu.
-- This type is added to cover the case of a compiler that does not
-- recognize CstsFrameworkPdu as being a top level PDU.
-- ===
CstsFrameworkTopPdu ::= CstsFrameworkPdu

END

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page F-49 February 2021

F3.16 CSTS SPECIFICATION FRAMEWORK PROCEDURE PARAMETERS,
EVENTS, AND DIRECTIVES

CCSDS-CSTS-FW-PROCEDURE-PARAMETERS-EVENTS-DIRECTIVES
{ iso(1) identified-organization(3) standards-producing-organization(112)
 ccsds(4) css(4) csts(1) framework(1) modules(1)
 procedureParamEventDirective(16) version(2)
}

DEFINITIONS
IMPLICIT TAGS
::= BEGIN

EXPORTS procAssociationControl
, pACparametersId
, pACeventsId
, pACdirectivesId
, pACinitiatorId
, PACinitiatorIdType
, pACresponderId
, PACresponderIdType
, pACresponderPortId
, PACresponderPortIdType
, pACserviceInstanceId
, PACserviceInstanceIdType
, procUnbuffDataDelivery
, pUBDDparametersId
, pUBDDeventsId
, pUDDdirectivesId
, procBuffDataDelivery
, pBDDparametersId
, pBDDeventsId
, pBDDdirectivesId
, pBDDreturnBufferSize
, PBDDreturnBufferSizeType
, pBDDdeliveryMode
, PBDDdeliveryModeType
, pBDDdeliveryLatencyLimit
, PBDDdeliveryLatencyLimitType
, pBDDconfigurationChange
, pBDDconfigurationChangeEvtValue1
, PBDDconfigurationChangeEvtValue1Type
, pBDDconfigurationChangeEvtValue2
, PBDDconfigurationChangeEvtValue2Type
, procDataProcessing
, pDPparametersId
, pDPeventsId
, pDPdirectivesId
, pDPinputQueueSize
, PDPinputQueueSizeType
, pDPdataProcessingCompleted
, pDPconfigurationChange
, pDPconfigurationChangeEvtValue
, PDPconfigurationChangeEvtValueType
, procBufferDataProcessing
, pBDPparametersId
, pBDPeventsId
, pBDPdirectivesId
, pBDPdataTransferMode

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page F-50 February 2021

, PBDPdataTransferModeType
, pBDPmaxForwardBufferSize
, PBDPmaxForwardBufferSizeType
, pBDPprocessingLatencyLimit
, PBDPprocessingLatencyLimitType
, pBDPdataProcessingCompleted
, pBDPconfigurationChange
, pBDPconfigurationChangeEvtValue1
, PBDPconfigurationChangeEvtValue1Type
, pBDPconfigurationChangeEvtValue2
, PBDPconfigurationChangeEvtValue2Type
, pBDPconfigurationChangeEvtValue3
, PBDPconfigurationChangeEvtValue3Type
, procSeqControlledDataProcess
, pSCDPparametersId
, pSCDPeventsId
, pSCDPdirectivesId
, pSCDPdataUnitId
, PSCDPdataUnitId
, pSCDPdataProcessingCompleted
, pSCDPexpired
, pSCDPlocked
, pSCDPconfigurationChange
, pSCDPconfigurationChangeEvtValue
, PSCDPconfigurationChangeEvtValueType
, pSCDPresetDirective
, pSCDPresetDirectiveDirQual
, PSCDPresetDirectiveDirQualType
, procInformationQuery
, pIQparametersId
, pIQeventsId
, pIQdirectivesId
, pIQnamedLabelLists
, PIQnamedLabelListsType
, pIQnamedLabelListsTypeExt
, procCyclicReport
, pCRparametersId
, pCReventsId
, pCRdirectivesId

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page F-51 February 2021

, pCRnamedLabelLists
, pCRminimumAllowedDeliveryCycle
, PCRnamedLabelListsType
, PCRminimumAllowedDeliveryCycleType
, pCRnamedLabelListsTypeExt
, procNotification
, pNparametersId
, pNeventsId
, pNdirectivesId
, pNnamedLabelLists
, PNnamedLabelListsType
, pNnamedLabelListsTypeExt
, procThrowEvent
, pTEparametersId
, pTEeventsId
, pTEdirectivesId
;

IMPORTS fwProceduresFunctionalities
 FROM CCSDS-CSTS-OBJECT-IDENTIFIERS

 ServiceInstanceIdentifier
 FROM CCSDS-CSTS-SERVICE-INSTANCE-ID

 AuthorityIdentifier
, BufferSize
, DataTransferMode
, DataUnitId
, DeliveryLatencyLimit
, DeliveryMode
, IdentifierString
, IntPos
, IntUnsigned
, Label
, ProcessingLatencyLimit
, ProductionStatus
 FROM CCSDS-CSTS-COMMON-TYPES
;

-- ==
-- FRAMEWORK CROSS SUPPORT IDENTIFIERS

-- ASSOCIATION CONTROL
procAssociationControl OBJECT IDENTIFIER ::=
 {fwProceduresFunctionalities 1}
pACparametersId OBJECT IDENTIFIER ::= {procAssociationControl 1}
pACeventsId OBJECT IDENTIFIER ::= {procAssociationControl 2}
pACdirectivesId OBJECT IDENTIFIER ::= {procAssociationControl 3}
pACinitiatorId OBJECT IDENTIFIER ::= {pACparametersId 1}
PACinitiatorIdType ::= AuthorityIdentifier
pACresponderId OBJECT IDENTIFIER ::= {pACparametersId 2}
PACresponderIdType ::= AuthorityIdentifier
pACresponderPortId OBJECT IDENTIFIER ::= {pACparametersId 3}
PACresponderPortIdType ::= IdentifierString (SIZE (3 .. 16))
pACserviceInstanceId OBJECT IDENTIFIER ::= {pACparametersId 4
PACserviceInstanceIdType ::= ServiceInstanceIdentifier

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page F-52 February 2021

-- UNBUFFERED DATA DELIVERY
procUnbuffDataDelivery OBJECT IDENTIFIER ::=
 {fwProceduresFunctionalities 2}
pUBDDparametersId OBJECT IDENTIFIER ::= {procUnbuffDataDelivery 1}
pUBDDeventsId OBJECT IDENTIFIER ::= {procUnbuffDataDelivery 2}
pUDDdirectivesId OBJECT IDENTIFIER ::= {procUnbuffDataDelivery 3}

-- BUFFERED DATA DELIVERY
procBuffDataDelivery OBJECT IDENTIFIER ::=
 {fwProceduresFunctionalities 3}
pBDDparametersId OBJECT IDENTIFIER ::= {procBuffDataDelivery 1}
pBDDeventsId OBJECT IDENTIFIER ::= {procBuffDataDelivery 2}
pBDDdirectivesId OBJECT IDENTIFIER ::= {procBuffDataDelivery 3}
pBDDreturnBufferSize OBJECT IDENTIFIER ::= {pBDDparametersId 1}
PBDDreturnBufferSizeType ::= BufferSize
pBDDdeliveryMode OBJECT IDENTIFIER ::= {pBDDparametersId 2}
PBDDdeliveryModeType ::= DeliveryMode
pBDDdeliveryLatencyLimit OBJECT IDENTIFIER ::= {pBDDparametersId 3}
PBDDdeliveryLatencyLimitType ::= DeliveryLatencyLimit
pBDDconfigurationChange OBJECT IDENTIFIER ::= {pBDDeventsId 1}
pBDDconfigurationChangeEvtValue1 OBJECT IDENTIFIER ::= {pBDDreturnBufferSize}
PBDDconfigurationChangeEvtValue1Type ::= PBDDreturnBufferSizeType
pBDDconfigurationChangeEvtValue2 OBJECT IDENTIFIER ::= {pBDDdeliveryLatencyLimit}
PBDDconfigurationChangeEvtValue2Type ::= PBDDdeliveryLatencyLimitType

-- DATA PROCESSING
procDataProcessing OBJECT IDENTIFIER ::= {fwProceduresFunctionalities 4}
pDPparametersId OBJECT IDENTIFIER ::= {procDataProcessing 1}
pDPeventsId OBJECT IDENTIFIER ::= {procDataProcessing 2}
pDPdirectivesId OBJECT IDENTIFIER ::= {procDataProcessing 3}
pDPinputQueueSize OBJECT IDENTIFIER ::= {pDPparametersId 1}
PDPinputQueueSizeType ::= BufferSize
pDPdataProcessingCompleted OBJECT IDENTIFIER ::= {pDPeventsId 1}
pDPconfigurationChange OBJECT IDENTIFIER ::= {pDPeventsId 2}
pDPconfigurationChangeEvtValue OBJECT IDENTIFIER ::= {pDPinputQueueSize}
PDPconfigurationChangeEvtValueType ::= PDPinputQueueSizeType

-- BUFFERED DATA PROCESSING
procBufferDataProcessing OBJECT IDENTIFIER ::= {fwProceduresFunctionalities 5}
pBDPparametersId OBJECT IDENTIFIER ::= {procBufferDataProcessing 1}
pBDPeventsId OBJECT IDENTIFIER ::= {procBufferDataProcessing 2}
pBDPdirectivesId OBJECT IDENTIFIER ::= {procBufferDataProcessing 3}
pBDPdataTransferMode OBJECT IDENTIFIER ::= {pBDPparametersId 1}
PBDPdataTransferModeType ::= DataTransferMode
pBDPmaxForwardBufferSize OBJECT IDENTIFIER ::= {pBDPparametersId 2}
PBDPmaxForwardBufferSizeType ::= BufferSize
pBDPprocessingLatencyLimit OBJECT IDENTIFIER ::= {pBDPparametersId 3}
PBDPprocessingLatencyLimitType ::= ProcessingLatencyLimit
pBDPdataProcessingCompleted OBJECT IDENTIFIER ::= {pDPdataProcessingCompleted}
pBDPconfigurationChange OBJECT IDENTIFIER ::= {pDPconfigurationChange}
pBDPconfigurationChangeEvtValue1 OBJECT IDENTIFIER ::= {pBDPmaxForwardBufferSize}
PBDPconfigurationChangeEvtValue1Type ::= PBDPmaxForwardBufferSizeType
pBDPconfigurationChangeEvtValue2 OBJECT IDENTIFIER ::= {pDPinputQueueSize}
PBDPconfigurationChangeEvtValue2Type ::= PDPinputQueueSizeType
pBDPconfigurationChangeEvtValue3 OBJECT IDENTIFIER ::= {pBDPprocessingLatencyLimit}
PBDPconfigurationChangeEvtValue3Type ::= PBDPprocessingLatencyLimitType

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page F-53 February 2021

-- SEQUENCE-CONTROLLED DATA PROCESSING
procSeqControlledDataProcess OBJECT IDENTIFIER ::=
 {fwProceduresFunctionalities 6}
pSCDPparametersId OBJECT IDENTIFIER ::=
 {procSeqControlledDataProcess 1}
pSCDPeventsId OBJECT IDENTIFIER ::=
 {procSeqControlledDataProcess 2}
pSCDPdirectivesId OBJECT IDENTIFIER ::=
 {procSeqControlledDataProcess 3}
pSCDPdataUnitId OBJECT IDENTIFIER ::= {pSCDPparametersId 1}
PSCDPdataUnitId ::= DataUnitId
pSCDPdataProcessingCompleted OBJECT IDENTIFIER ::=
 {pDPdataProcessingCompleted}
pSCDPexpired OBJECT IDENTIFIER ::= {pSCDPeventsId 1}
pSCDPlocked OBJECT IDENTIFIER ::= {pSCDPeventsId 2}
pSCDPconfigurationChange OBJECT IDENTIFIER ::= {pDPconfigurationChange}
pSCDPconfigurationChangeEvtValue OBJECT IDENTIFIER ::= {pDPinputQueueSize}
PSCDPconfigurationChangeEvtValueType ::= PDPinputQueueSizeType
pSCDPresetDirective OBJECT IDENTIFIER ::= {pSCDPdirectivesId 1}
pSCDPresetDirectiveDirQual OBJECT IDENTIFIER ::= {pSCDPresetDirective 1}
PSCDPresetDirectiveDirQualType ::= PSCDPdataUnitId

-- INFORMATION QUERY
procInformationQuery OBJECT IDENTIFIER ::=
 {fwProceduresFunctionalities 7}
pIQparametersId OBJECT IDENTIFIER ::= {procInformationQuery 1}
pIQeventsId OBJECT IDENTIFIER ::= {procInformationQuery 2}
pIQdirectivesId OBJECT IDENTIFIER ::= {procInformationQuery 3}
pIQnamedLabelLists OBJECT IDENTIFIER ::= {pIQparametersId 1}
-- Note: In case the service user selects a procedure type in the GET
-- invocation, the service provider will return the same list of
-- parameters for each active instance of the selected procedure type.
PIQnamedLabelListsType ::= LabelListSet
pIQnamedLabelListsTypeExt OBJECT IDENTIFIER ::= {pIQnamedLabelLists 1}

-- CYCLIC REPORT
procCyclicReport OBJECT IDENTIFIER ::=
 {fwProceduresFunctionalities 8}
pCRparametersId OBJECT IDENTIFIER ::= {procCyclicReport 1}
pCReventsId OBJECT IDENTIFIER ::= {procCyclicReport 2}
pCRdirectivesId OBJECT IDENTIFIER ::= {procCyclicReport 3}
pCRnamedLabelLists OBJECT IDENTIFIER ::= {pCRparametersId 1}
pCRminimumAllowedDeliveryCycle OBJECT IDENTIFIER ::= {pCRparametersId 2}
PCRnamedLabelListsType ::= LabelListSet
PCRminimumAllowedDeliveryCycleType ::= IntPos
pCRnamedLabelListsTypeExt OBJECT IDENTIFIER ::= {pCRnamedLabelLists 1}

-- NOTIFICATION
procNotification OBJECT IDENTIFIER ::=
 {fwProceduresFunctionalities 9}
pNparametersId OBJECT IDENTIFIER ::= {procNotification 1}
pNeventsId OBJECT IDENTIFIER ::= {procNotification 2}
pNdirectivesId OBJECT IDENTIFIER ::= {procNotification 3}
pNnamedLabelLists OBJECT IDENTIFIER ::= {pNparametersId 1}
PNnamedLabelListsType ::= LabelListSet
pNnamedLabelListsTypeExt OBJECT IDENTIFIER ::= {pNnamedLabelLists 1}

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page F-54 February 2021

-- THROW EVENT
procThrowEvent OBJECT IDENTIFIER ::=
 {fwProceduresFunctionalities 10}
pTEparametersId OBJECT IDENTIFIER ::= {procThrowEvent 1}
pTEeventsId OBJECT IDENTIFIER ::= {procThrowEvent 2}
pTEdirectivesId OBJECT IDENTIFIER ::= {procThrowEvent 3}

-- Additional types for the Framework Functional Resource
LabelList ::= SEQUENCE
{ name VisibleString
, defaultList BOOLEAN
, labels SEQUENCE OF Label
}

LabelListSet ::= SET OF LabelList
-- Only one list in the set can be the default list.

END

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page G-1 February 2021

ANNEX G

SERVICE STATE TABLES

(NORMATIVE)

G1 OVERVIEW

The state machine of a CSTS is determined by the state type (stateless or stateful) of the
procedure that the service uses for its prime procedure instance.

G2 STATE MACHINE FOR CSTSES WITH A STATELESS PRIME PROCEDURE
INSTANCE

NOTE – This subsection specifies the state machine for a CSTS that has a stateless prime
procedure.

G2.1 An instance of the CSTS shall have one of two states: ‘unbound’ (state 1) or ‘bound’
(state 2).

G2.2 When the state of a CSTS instance’s Association Control procedure is ‘unbound’, the
state of the CSTS shall be ‘unbound’ (state 1).

G2.3 When the state of a CSTS instance’s Association Control procedure is ‘bound’, the
state of the CSTS shall be ‘bound’ (state 2).

NOTE – The states of the Association Control procedure and the events that cause
transitions between them are defined in 4.3.6.

G2.4 Each CSTS with stateless prime procedure shall conform to the state table for a CSTS
instance defined in table G-1, supported by information in tables G-2 through G-4.

G2.5 The state table for a CSTS with a stateless prime procedure instance may be extended
to support extended behavior that is associated with that CSTS.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page G-2 February 2021

Table G-1: State Table for CSTSes with a Stateless Prime Procedure Instance

No. Incoming Event State 1
(‘unbound’)

State 2
(‘bound)

1 (BindInvocation) IF
 “positive result”
THEN
 (+BindReturn)
 2
ELSE
 (-BindReturn)
ENDIF

(PeerAbortInvocation ‘protocol error’)
{clean up } 1

2 ‘abort-causing event xxx’ [ignore] (PeerAbortInvocation ‘xxx’)
{clean up}
 1

3 (UnbindInvocation) [ignore] IF
 “positive result”
THEN
 (+unbindReturn)
 {clean up}
 1
ELSE
 (-unbindReturn)
ENDIF

4 (PeerAbortInvocation) [ignore] {clean up}
 1

5 ‘not authenticated PDU’ [ignore] [ignore]

6 ‘invalid PDU ‘xxx’’ (PeerAbortInvocation ‘xxx’)
 1

(PeerAbortInvocation ‘xxx’)
 1

7 ‘protocol abort’ [ignore] {clean up}
 1

Table G-2: State Table for CSTSes with a Stateless Prime Procedure Instance: Event
Description References

Event Reference

‘abort-causing event xxx’

An event has occurred that is designated as resulting in an abort of
the association (3.6). The values for ‘xxx’ are identical to the values of
the diagnostic parameter of the PEER-ABORT operation defined in
3.6.2.2.

‘not authenticated PDU’ 3.2.4.5.1

‘invalid PDU ‘xxx’’ 3.2.3.6, 4.2.2.4. ‘xxx’ is one of the diagnostic values specified in
4.2.2.5

‘protocol abort’ 4.3.3.1.11.5

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page G-3 February 2021

Table G-3: State Table for CSTSes with a Stateless Prime Procedure Instance:
Predicate Descriptions

Predicate Evaluates to TRUE if

“positive result” No reason for sending a negative return has been detected.

Table G-4: State Table for CSTSes with a Stateless Prime Procedure Instance:
Compound Action Definitions

Name Actions Performed

{clean up} stop all response timers
reset parameter values to those specified in the service package

G3 STATE MACHINE FOR CSTSES WITH A STATEFUL PRIME PROCEDURE
INSTANCE

NOTE – This subsection specifies the state machine for a CSTS that has a stateful prime
procedure instance.

G3.1 An instance of a CSTS shall have one of two states: ‘unbound’ (state 1) or ‘bound’
(state 2).

G3.2 When the state of a CSTS instance’s Association Control procedure is ‘unbound’, the
state of the CSTS shall be ‘unbound’ (1).

NOTE – In state 1, all resources required to enable the provision of the service have been
allocated, and all objects required to provide the service have been instantiated.
However, no association yet exists between the service user and the service
provider (i.e., the transfer service provider port is not bound).

G3.3 When the state of a CSTS instance’s Association Control procedure is ‘bound’, the
state of the CSTS shall be ‘bound’ (2).

NOTE – The states of the Association Control procedure and the events that cause
transitions between them are defined in 4.3.6. In state 2, an association has been
established between the service user and the service provider, and they may
interact by means of the operations defined by the procedures of which the
service is composed.

G3.4 An instance of a CSTS in the ‘bound’ state shall have one of two substates:
‘bound.ready’ (substate 2.1) or ‘bound.active’ (substate 2.2).

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page G-4 February 2021

G3.5 The CSTS instance shall be in the ‘bound.ready’ (2.1) substate when the CSTS instance
is in the ‘bound’ state and its prime procedure instance is in the ‘inactive’ state (see 4.2.4).

G3.6 The CSTS instance shall be in the ‘bound.active’ (2.2) substate when the CSTS
instance is in the ‘bound’ state and its prime procedure instance is in the ‘active’ state.

NOTE – Secondary procedures required by the service may act independently of the
substates 2.1 and 2.2 of the state ‘bound’.

G3.7 The service instance shall remain in the ‘bound.active’ substate until the prime
procedure instance transitions back to the state ‘inactive’ as specified 4.2.4.

G3.8 Each CSTS that has a stateful prime procedure instance shall conform to the state
table for a CSTS defined in table G-5, supported by information in tables G-6 through G-8.

G3.9 The state table for a CSTS with a stateful prime procedure instance may be extended
to support extended behavior that is associated with that CSTS.

Table G-5: State Table for CSTSes with a Stateful Prime Procedure Instance

No. Incoming Event State 1
(‘unbound’)

State 2.1
(‘bound.ready’)

State 2.2
(‘bound.active’)

1 (BindInvocation) IF
 “positive result”
THEN
 (+BindReturn)
 2.1
ELSE
 (-BindReturn)
ENDIF

(PeerAbortInvocation
‘protocol error’)
{clean up}
 1

(PeerAbortInvocation ‘protocol
error’)
{clean up}
 1

2 ‘transition to active’ [ignore] 2.2 Not applicable
3 ‘transition to inactive’ [ignore] (PeerAbortInvocation

‘protocol error’)
 1

 2.1

4 ‘abort-causing event
xxx’

[ignore] (PeerAbortInvocation ‘xxx’)
 1

(PeerAbortInvocation ‘xxx’)
 1

5 (UnbindInvocation) [ignore] IF
 “positive result”
THEN
 (+unbindReturn)
 {clean up}
 1
ELSE
 (-unbindReturn)
ENDIF

(PeerAbortInvocation ‘protocol
error’)
 1

6 (PeerAbortInvocation) [ignore] {clean up}
 1

{clean up}
 1

7 ‘protocol abort’ [ignore] {clean up}
 1

{clean up}
 1

8 ‘not authenticated PDU’ [ignore] [ignore] [ignore]
9 ‘invalid PDU ‘xxx’’ [ignore] (PeerAbortInvocation ‘xxx’)

 1
(PeerAbortInvocation ‘xxx’)
 1

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page G-5 February 2021

Table G-6: State Table for CSTSes with a Stateful Prime Procedure Instance: Event
Description References

Event Reference
‘abort-causing event
xxx’

An event has occurred that is designated as resulting in an abort of the
association (3.6). The values for ‘xxx’ are identical to the values of the
diagnostic parameter of the PEER-ABORT operation defined in
3.6.2.2.

‘transition to active’ Internal event from the prime procedure signaling that it has
transitioned to the ‘active’ state (see 4.2.4).

‘transition to inactive’ Internal event from the prime procedure signaling that it has
transitioned to the ‘inactive’ state (see 4.2.4).

‘protocol abort’ 4.3.3.1.11.5

‘not authenticated PDU’ 3.2.4.5.1

‘invalid PDU ‘xxx’’ 3.2.3.6, 4.2.2.4. ‘xxx’ is one of the diagnostic values specified in
4.2.2.5.

Table G-7: State Table for CSTSes with a Stateful Prime Procedure Instance:
Predicate Descriptions

Predicate Evaluates to TRUE if
“positive result” No reason for sending a negative return has been detected.

Table G-8: State Table for CSTSes with a Stateful Prime Procedure Instance:
Compound Action Definitions

Name Actions Performed
{clean up} stop all response timers

reset parameter values to those specified in the service package

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page H-1 February 2021

ANNEX H

SECURITY, SANA, AND PATENT CONSIDERATIONS

(INFORMATIVE)

H1 SECURITY ASPECTS OF CROSS SUPPORT TRANSFER SERVICES

H1.1 INTRODUCTION

This subsection describes security aspects that are common to CSTSes based on the CSTS
Specification Framework. Service specifications based on this Recommended Standard are
expected to reference the description provided herein and add a discussion of service-specific
security aspects as applicable.

H1.2 SECURITY BACKGROUND AND OVERVIEW

The CSTS Specification Framework explicitly provides authentication and access control for
CSTSes. Additional security capabilities, if required, are levied on the underlying
communications services that support the CSTS. CSTSes are defined as layered application
services operating over underlying communications services that must meet certain
requirements, but which are otherwise unspecified. Selection of the underlying
communications services over which real CSTS implementations connect is based on the
requirements of the communicating parties and/or the availability of CCSDS-standard
communications technology profiles and proxy specifications. Different underlying
communications technology profiles are intended to address not only different performance
requirements but also different security requirements. Missions and service providers are
expected to select from these technology profiles to acquire the performance and security
capabilities appropriate to the mission. Specification of the various underlying
communications technologies, and in particular their associated security provisions, are
outside the scope of this Recommended Standard.

NOTE – A CCSDS-standard communications technology profile for CSTS is specified by
reference [2].

H1.3 STATEMENTS OF SECURITY CONCERNS

H1.3.1 General

This subsection identifies the support of the CSTS Specification Framework for capabilities
that respond to security concerns in the areas of data privacy, data integrity, authentication,
access control, availability of resources, and auditing.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page H-2 February 2021

H1.3.2 Data Privacy (Also Known as Confidentiality)

The CSTS Specification Framework does not define explicit data privacy requirements or
capabilities to ensure data privacy. Data privacy is expected to be ensured outside of the
Cross Support Transfer Service layer in the underlying communications service.

H1.3.3 Data Integrity

The CSTS Specification Framework defines and enforces a strict sequence of operations that
constrain the ability of a third party to inject operation invocations or responses into the
transfer service association between a service user and service provider. This constrains the
ability of a third party to seize control of an active Cross Support Transfer Service instance
without detection.

NOTE – The CSTS Specification Framework requires that the underlying communications
service transfer data in sequence, completely and with integrity, without
duplication, with flow control that notifies the application layer in the event of
congestion, and with notification to the application layer in the event that
communication between the service user and the service provider is disrupted
(see 1.3.1). The ISP1 protocol (reference [2]) that is assumed to be used does
provide these capabilities.

H1.3.4 Authentication

This CSTS Specification Framework defines authentication requirements (see 3.2.4) and
defines initiator-identifier, responder-identifier, invoker-
credentials, and performer-credentials parameters of the service operation
invocations and responses that are used to perform CSTS authentication. The CSTS
authentication capability can be selectively set to authenticate at one of three levels:
authenticate every CSTS PDU, authenticate only the BIND operation invocation and return, or
perform no authentication. Depending upon the inherent authentication available from the
underlying communication network, the security environment in which the service user and
service provider are operating, and the security requirements of the spaceflight mission, the
CSTS authentication level can be adapted by choosing the operation invocation and responses
that are to be authenticated. Furthermore, the mechanism used for generating and checking the
credentials, and thus the level of protection against masquerading (simple or strong
authentication) can be selected in accordance with the results of a threat analysis. One possible
procedure by which operation invocations and responses are authenticated is described in the
CSS Green Book (reference [I2]). Although the procedure as presented in reference [I2] refers
to SLE transfer services, it can equally be applied to CSTSes.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page H-3 February 2021

H1.3.5 Access Control

This CSTS Specification Framework defines access control requirements (see 4.3.3.1.12),
and defines initiator-identifier and responder-identifier parameters of
operation invocations and responses that are used to perform CSTS access control. The
procedure by which access to a CSTS is controlled is described in the CSS Green Book
(reference [I2]). Although the procedure as presented in reference [I2] refers to SLE transfer
services, it can equally be applied to CSTSes.

H1.3.6 Availability of Resources

CSTSes are provided via communication networks that have some limit with respect to the
resources available to support those services. If these resources can be diverted from their
support of the CSTS (in what is commonly known as ‘denial of service’) then the
performance of the CSTS may be curtailed or inhibited. This CSTS Specification
Framework does not define explicit capabilities to prevent denial of service. Resource
availability is expected to be ensured by appropriate capabilities in the underlying
communications service. The specific capabilities will be dependent upon the technologies
used in the underlying communications service and the security environment in which the
transfer service user and service provider operate.

H1.3.7 Auditing

This CSTS Specification Framework does not define explicit security auditing requirements
or capabilities. Security auditing is expected to be negotiated and implemented bilaterally
between the spaceflight mission and the service provider.

H1.4 POTENTIAL THREATS AND ATTACK SCENARIOS

H1.4.1 Breach of Privacy

CSTSes, in general, depend on unspecified mechanisms operating in the underlying
communications service or on privacy-ensuring capabilities in the service-specific application
processes that interoperate through the CSTS Specification Framework procedures, to ensure
data privacy (confidentiality). If no such mechanisms are actually implemented, or the
mechanisms selected are inadequate or inappropriate to the network environment in which the
mission is operating, an attacker could read the data contained in the CSTS PDUs as they
traverse the WAN between service user and service provider.

H1.4.2 PDU Interception and Replay

The CSTS Specification Framework constrains the ability of a third party to seize control of an
active CSTS instance, but it does not specify mechanisms that would prevent an attacker from
intercepting the PDUs and replacing the contents of the parameter carried by the PDUs. The

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page H-4 February 2021

prevention of such a replacement attack depends on unspecified mechanisms in the underlying
communications service, in unspecified (with respect to the CSTS Specification Framework)
mechanisms in the service-specific application processes that interoperate through the CSTS
Specification Framework procedures (e.g., specifying an encryption function as part of the
standard service), or some combination of the two. If no such mechanisms are actually
implemented, or the mechanisms selected are inadequate or inappropriate to the network
environment in which the mission is operating, an attacker could substitute data transferred
between the service user and the service provider without detection.

H1.4.3 Unauthenticated Access

If the CSTS authentication capability is not used and if authentication is not ensured by the
underlying communications service, attackers could somehow obtain valid initiator-
identifier values and use them to initiate CSTS instances by which they could gain
access to the data transferred via these services or inject data for further processing by the
service provider.

H1.4.4 Denial of Service Attacks

A CSTS depends on unspecified mechanisms operating in the underlying communications
service to ensure that the supporting network has sufficient resources to provide sufficient
support to legitimate service users. If no such mechanisms are actually implemented, or the
mechanisms selected are inadequate or inappropriate to the network environment in which the
mission is operating, an attacker could prevent legitimate service users from using the CSTS.

H1.4.5 Failure to Detect Breach Attempts

If the service provider of a CSTS provides no security auditing capabilities, or if a service
user chooses not to employ auditing capabilities that do exist, then attackers may delay or
escape detection while stealing or altering data exchanged via the service.

H1.5 CONSEQUENCES OF NOT APPLYING SECURITY

The consequences of not applying security to CSTS are possible degradation and loss of
ability to use the service, or the substitution of altered data that are exchanged between the
service user and service provider of that service. In particular, the alteration of telecommand
and telemetry data may seriously affect spacecraft safety.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page H-5 February 2021

H2 SANA CONSIDERATION

H2.1 GENERAL

This Recommended Standard requests SANA to extend the already existing registry for OIDs
and to create a new registry to capture the specification of Functional Resources, as described
below. New assignments in these registries, in conformance with the modifications identified,
will be shown at the global SANA registry Web site: https://sanaregistry.org. Therefore the
reader shall look at the SANA Web site for all the assignments contained in these registries.

Already registered registry entries shall not be affected by this Recommended Standard.

This Recommended Standard makes extensive use of OIDs. All OIDs specified by this
Recommended Standard are part of OID subtrees, the management of which has been delegated
to the CSS Area. The structure of those subtrees is specified in annex D and extends the already
existing OID registry that is administered by SANA on behalf of CCSDS. The SANA registry
containing the overall CCSDS OID tree may be found at https://sanaregistry.org/oid/tree/. The
CSTS OID subtree is registered at https://sanaregistry.org/r/oid.

Annex K provides a graphical representation of the OID tree structure and the OID values
relevant in the context of this Recommended Standard. The normative specification of the
OID tree structure is provided in annex D, while the normative assignment of OID values can
be found in annex F.

H2.2 FRAMEWORK OBJECT IDENTIFIERS

Within the OID subtree, the management of which has been delegated to the CSS Area, a
subtree shall be created that accommodates all OIDs associated with the present version of
this Recommended Standard. The root node of this subtree shall be:
{iso(1) identified-organization(3) standards-producing-
organization(112) ccsds(4) css(4) csts(1) framework(1)}

The recommendations in this document request SANA to update the CCSDS OID registry by
adding the OIDs and labels contained in the above-identified subtree. The CSS Area provides the
new OIDs and their labels to SANA in an Extensible Markup Language (XML) formatted file.

The assignment policy for this ‘framework’ subtree is that

a) new OIDs shall be constructed as specified in D4; and

b) new OIDs shall be allocated in one or more of the subbranches of this subtree only in
the context of the definition of new operations and additional extensions of the
definitions of the operations, in case of new or additional derived procedures and/or
new ASN.1 modules specified in this Recommended Standard, that is, only when a
new issue of this Recommended Standard is approved.

https://sanaregistry.org/oid/tree/

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page H-6 February 2021

NOTE – The engineering review of the proposed registry changes is implied by the
CCSDS publication and approval process for Recommended Standards.

H2.3 SERVICE SPECIFIC OIDS

Within the OID subtree, the management of which has been delegated to the CSS Area, a
subtree shall be created that accommodates all OIDs of CSTS types and, as applicable,
service-type-specific derived services, parameters, procedures, and ASN.1 modules, and the
reference to the Functional Resource Type modeling the given service type. The root node of
this subtree shall be:

{iso(1) identified-organization(3) standards-producing-
organization(112) ccsds(4) css(4) csts(1) services(2)}

The recommendations in those Recommended Standards that specify CSTSes based on this
document request SANA to update the CCSDS OID registry by adding the OIDs and labels
contained in the CSTS type specific part of the above identified subtree. The CSS Area
provides the new OIDs and their labels to SANA in an XML-formatted file.

The assignment policy for this ‘services’ subtree is that

a) new Object Identifiers shall be constructed as specified in D5; and

b) new Object Identifiers shall be allocated within the subtree part allocated to the given
CSTS type, only in the context of the publication of the Recommended Standard
specifying that CSTS type.

NOTE – The engineering review of the proposed registry changes is implied by the
CCSDS publication and approval process for Recommended Standards.

H2.4 FUNCTIONAL RESOURCE REGISTRY

Some of the operations specified in this Recommended Standard interact with Functional
Resources, for instance, to read or set parameters, or to be informed of the occurrence of certain
events. The necessary identification and definition of these Functional Resource Types and the
associated parameters, events, and directives are provided in a dedicated registry.

The recommendations in this document have created the local SANA registry named
‘Functional Resources’ located at https://sanaregistry.org/r/functional_resources.

Informative material regarding the detailed content of this registry is provided in annex L of
this Recommended Standard. The normative specification of how the records of this registry
shall be built is provided in D6.

https://sanaregistry.org/r/functional_resources/

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page H-7 February 2021

Within the OID subtree, the management of which has been delegated to the CSS Area, a
subtree has been created that accommodates all the OIDs used to identify each record of the
‘Functional Resources’ registry. The root node of this subtree is:

{iso(1) identified-organization(3) standards-producing-
organization(112) ccsds(4) css(4) crossSupportResources(2)}

There are two subnodes under the ‘crossSupportResources’ node:
‘crossSupportFunctionalities’ and ‘agenciesFunctionalities’, used to register CCSDS-
standard Functional Resource Types and Agency-specific Functional Resource Types,
respectively. Under each Functional Resource Type OID, the parameters, events, and
directives are registered, each under a dedicated subnode.

The Functional Resource registry is owned by the CSS Area, which therefore is also the
Review Authority of this registry. Any proposed change under the
‘crossSupportFunctionalities’ node of this registry, be it the addition of a Functional
Resource type or the modification of a Functional Resource’s parameters, events, or
directives, shall originate from the CSS Area and require engineering review by that Area or
an Expert Group, if such group is appointed by the CCSDS Management Council (CMC).
The way that records of this part of the registry and in particular the associated OIDs shall be
built is specified in D6.2.

Service providers, typically some Agency, may implement ‘private’ capabilities that are
outside the functionality covered by the CCSDS specified Functional Resources but still of
potential interest to cross support. Such a service provider may, via a designated control
authority, propose the registration of Functional Resources associated with such ‘private’
capabilities. If approved following the engineering review by the Review Authority, that is,
the CSS Area, SANA will be requested to update the registry part under the
‘agenciesFunctionalities’ node accordingly. The way that records of this part of the registry
and in particular the associated OIDs shall be built is specified in D6.3.

H2.5 REGISTRIES OF ELEMENTS OF SERVICE INSTANCE IDENTIFIERS

A specific CSTS instance that a user wants to bind to is identified by means of the
service-instance-identifier parameter of the BIND invocation. As specified in
3.4.2.2.7, the parameter consists of the following elements:

a) an identifier of the spacecraft being supported by the given CSTS instance;

b) an identifier of the facility where the CSTS provider is located;

c) an identifier of the CSTS type;

d) the service instance number.

The elements a), b), and c) are Object Identifiers.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page H-8 February 2021

Spacecraft are listed in the enterprise Spacecraft Registry located at
https://sanaregistry.org/r/spacecraft. This registry, among others, assigns an OID to each
spacecraft where all these OIDs are elements of the subtree, the root node of which is:

{iso(1) identified-organization(3) standards-producing-
organization(112) ccsds(4) spacecraft(7)}

Facilities are listed in the enterprise Service Site and Aperture Registry located at
https://sanaregistry.org/r/service_sites_apertures. This registry, among others, assigns an OID
to each service site. The service site may be further broken down as applicable per aperture, per
forward link and return link of that aperture, and per frequency band supported on the forward
link and return link, respectively. Depending on the entity the CSTS provider is associated
with, the OID of the CSTS provider location is formed. The root node in any case is:

{iso(1) identified-organization(3) standards-producing-
organization(112) ccsds(4) service-site-and-aperture(6)}

Agencies or other service providers implementing CSTSes will also decide where these
providers will be located in terms of facilities operated by this service provider and if such a
provider is common with respect to the given site or only available in conjunction with a
specific aperture or frequency band of that aperture. The Registration Authority of this
registry is SANA. Requests for the addition of new entries to this registry must come from
the official representative, that is, an Agency Representative (AR) with the service site Point
of Contact (PoC) role, of a space agency or other organization that is a member of the
CCSDS and desires to have a site registered as supporting the given CSTS type. The SANA
Steering Group (SSG) serves as the Review Authority of this registry.

The subtree containing the CSTS type OIDs is addressed in H2.3. Regarding the link
between service sites discussed above and the CSTS types available at those sites, it is
recommended that service providing organizations offering CSTSes should add the OIDs of
those CSTSes to the list of services available at that site in addition to the Initial Service
Types listed in reference [6].

H3 PATENT CONSIDERATIONS

No patent rights are known to adhere to any of the specifications of this Recommended
Standard.

https://sanaregistry.org/r/spacecraft
http://sanaregistry.org/r/service_sites_apertures

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page I-1 February 2021

ANNEX I

INFORMATIVE REFERENCES

(INFORMATIVE)

[I1] Organization and Processes for the Consultative Committee for Space Data Systems.
Issue 4. CCSDS Record (Yellow Book), CCSDS A02.1-Y-4. Washington, D.C.:
CCSDS, April 2014.

[I2] Cross Support Concept—Part 1: Space Link Extension Services. Issue 3. Report
Concerning Space Data System Standards (Green Book), CCSDS 910.3-G-3.
Washington, D.C.: CCSDS, March 2006.

[I3] Guidelines for the Specification of Cross Support Transfer Services. Issue 1.
Recommendation for Space Data System Practices (Magenta Book), CCSDS 921.2-M-
1. Washington, D.C.: CCSDS, March 2019.

[I4] Extensible Space Communication Cross Support—Service Management—Concept.
Issue 1. Report Concerning Space Data System Standards (Green Book), CCSDS
902.0-G-1. Washington, D.C.: CCSDS, September 2014.

[I5] Cross Support Transfer Service Concept. Issue 1. Report Concerning Space Data
System Standards (Green Book), CCSDS 920.0-G-1. Washington, D.C.: CCSDS,
forthcoming.

[I6] Cross Support Service Management—Service Management Utilization Request
Formats. Issue 1. Recommendation for Space Data System Standards (Blue Book),
CCSDS 902.9-B-1. Washington, D.C.: CCSDS, forthcoming.

[I7] Cross Support Service Management—Simple Schedule Format Specification. Issue 1.
Recommendation for Space Data System Standards (Blue Book), CCSDS 902.1-B-1.
Washington, D.C.: CCSDS, May 2018.

[I8] Space Communications Cross Support—Architecture Description Document. Report
Concerning Space Data System Standards (Green Book), CCSDS 901.0-G-1.
Washington, D.C.: CCSDS, November 2013.

[I9] Space Communications Cross Support—Architecture Requirements Document.
Recommended Practice for Space Data Systems (Magenta Book), CCSDS 901.1-M-1.
Washington, D.C.: CCSDS, May 2015.

[I10] Cross Support Service Management—Service Package Data Formats. Issue 1.
Recommendation for Space Data System Standards (Blue Book), CCSDS 902.4-B-1.
Washington, D.C.: CCSDS, forthcoming.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page I-2 February 2021

[I11] Cross Support Transfer Services—Monitored Data Service. Issue 1. Recommendation
for Space Data System Standards (Blue Book), CCSDS 922.1-B-1. Washington, D.C.:
CCSDS, April 2017.

[I12] Cross Support Transfer Services—Forward Frame Service. Issue 1. Recommendation
for Space Data System Standards (Blue Book), CCSDS 922.3-B-1. Washington, D.C.:
CCSDS, forthcoming.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page J-1 February 2021

ANNEX J

ABBREVIATIONS

(INFORMATIVE)

This annex lists the acronyms used in this Recommended Standard.

AD Area Director

AR Agency Representative

ASCII American Standard Code for Information Interchange

ASN.1 Abstract Syntax Notation One

B blocking operation

 BER Basic Encoding Rules (ASN.1)

C conditional

CCSDS Consultative Committee for Space Data Systems

CMC CCSDS Management Council

CSS CCSDS Cross Support Services Area

CSSS Cross Support Service System

CSTS Cross Support Transfer Services

DAD Deputy Area Director

 EM Element Management (of an ESLT)

ESLT Earth Space Link Terminal

ICS implementation conformance statement

IEC International Electrotechnical Commission

ISO International Organization for Standardization

ISP Internet Protocol for Transfer Services

M mandatory

N/A not applicable

NB non-blocking operation

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page J-2 February 2021

OID Object Identifier

OSI Open Systems Interconnection

PDU protocol data unit

 PICS protocol implementation conformance statement

PM Provision Management (of a Provider CSSS)

PoC point of contact

RAF Return All Frames (SLE)

RCF Return Channel Frame (SLE)

RL requirements list

ROCF Return Operational Control Field (SLE)

SANA Space Assigned Numbers Authority

SF stateful

SI International System of Units

SL stateless

SLE Space Link Extension

TCP Transmission Control Protocol

UM Utilization Management (of an Earth User CSSS)

UTC Universal Coordinated Time

WG working group

XML Extensible Markup Language

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page K-1 February 2021

ANNEX K

OBJECT IDENTIFIERS

(INFORMATIVE)

Object Identifiers are used for a unique and unambiguous identification of information
exchanged by the services derived from the CSTS Specifications Framework. The OIDs defined
for the use by Cross Support Services, as registered with SANA, are shown in figure K-1.

iso identified-organization (3) standards-producing-organization(112) ccsds(4)

space-link-extension 3 css 4
OIDs of SLE definitions OIDs for Cross Support

Services

Figure K-1: Cross Support Services Part of the CCSDS Object Identifiers Tree

The OIDs defined for the Cross Support Services are in turn broken down into two groups
(see figure K-2):

a) the OIDs defined for the use by CSTSes;

b) the OIDs defined for the use of Cross Support Resources.

css 4

csts 1 crossSupportResources 2

OIDs for Cross Support
Services

OIDs for Cross-Support
Transfer Services
Definitions

Published Identifiers to refer to
functional resources, parameters,
events or lists

Figure K-2: CSS Object Identifiers Tree

The CSTS OIDs are in turn subdivided into two subgroups, those required by this
Recommended Standard, that is, the CSTS Specification Framework, and those required by
new services (see figure K-3).

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page K-2 February 2021

csts 1

framework 1 services 2

OIDs for Cross-Support Transfer
Services Definitions

CSTS Specification Framework -
this branch encompasses only
Framework identifiers

Service type ids used in the BIND
operation. Ids of new services must be
inserted in this branch together with
procedures and extended parameters

Figure K-3: CSTS Object Identifiers Tree

The OIDs defined for this Recommended Standard cover

a) the modules: each ASN.1 module has its own identifier including a version;

b) the identifiers of the operations specified in this Recommended Standard;

c) the identifiers of all procedures and associated extensions in terms of additional
parameters;

d) procedure identifiers, as used in the operations’ standard operation header, and the
identifiers of Framework Functional Resources of the Framework.

The Framework OID branches are shown in figure K-4.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page K-3 February 2021

framework 1

modules 1 operations 2 procedures 3 fwProceduresFunctionalities 4

object-identifiers 1 bindInvocation 1 associationControl 1 procAssociationControl 1
service-instance 2 bindReturn 2 acDerivedProcedures 1 pACparametersId 1
common-types 3 acExtProcedureParam 2 pACinitiatorId 1
common-operations 4 unbindInvocation 3 acBindPosReturnExt 1 pACresponderId 2
associationControlPdus 5 unbindReturn 4 acBindDiagnosticsExt 2 pACresponderPortId 3
unbuffDataDeliveryPdus 6 acBindNegReturnExt 3 pACserviceInstanceId 4
bufDataDeliveryPdus 7 peerAbortInvocation 5
dataProcessingPdus 8 unbufferedDataDelivery 2 pACeventsId 2
bufferedDataProcessingPdus 9 startInvocation 6 uddDerivedProcedures 1 pACdirectivesId 3
sequenceControlledDataProcessingPdus 10 startReturn 7 cyclicReport 1
informationQueryPdus 11 startDiagnosticsExt 1 crDerivedProcedures 1 procUnbuffDataDelivery 2
cyclicReportPdus 12 crExtProcedureParam 2 pUBDDparametersId 1
notificationPdus 13 stopInvocation 8 crStartInvocExt 1 pUBDDeventsId 2
throwEventPdus 14 stopReturn 9 crStartNegReturnExt 2 pUDDdirectivesId 3
cstsFrameworkPdus 15 crTransferDataInvocDataExt 3
procedureParamEventDirective 16 executeDirectiveInvocation 10 procBuffDataDelivery 3
serviceGenericIdentifiers 17 executeDirectiveAcknowledge 11 uddExtProcedureParam 2 pBDDparametersId 1

execDirectiveNegAckDiagnosticsExt 1 pBDDreturnBufferSize 1
bufferedDataDelivery 3 pBDDdeliveryMode 2

executeDirectiveReturn 12 bddDerivedProcedures 1 pBDDdeliveryLatencyLimit 3
execDirectiveNegReturnDiagnosticsExt 1 bddExtProcedureParam 2

bddStartInvocExt 1 pBDDeventsId 2
getInvocation 13 bddStartDiagExt 2 pBDDconfigurationChange 1
getReturn 14

getPosReturnExt 1 dataProcessing 4 pBDDdirectivesId 3
getDiagnosticsExt 2

dpDerivedProcedures 1 procDataProcessing 4
notifyInvocation 15 bufferedDataProcessing 1 pDPparametersId 1
transferDataInvocation 16 bdpDerivedProcedures 1 pDPinputQueueSize 1
processDataInvocation 17 bdpExtProcedureParam 2
processDataReturn 18 sequenceControlledDataProcessing 2 pDPeventsId 2

scdpDerivedProcedures 1 pDPdataProcessingCompleted 1
scdpExtProcedureParam 2 pDPconfigurationChange 2

scdpStartInvocExt 1
scpdProcDataInvocExt 2 pDPdirectivesId 3
scdpProcDataPosReturnExt 3
scdpProcDataDiagExt 4 procBufferedDataProcessing 5
scdpProcDataNegReturnExt 5 pBDPparametersId 1
scdpNotifyProcStatusExt 6 pBDPdataTransferMode 1

pBDPmaxForwardBufferSize 2
dpExtProcedureParam 2 pBDPprocessingLatencyLimit 3

dpProcDataInvocExt 1
dpNotifyInvocExt 2 pBDPeventsId 2

pBDPdirectivesId 3
informationQuery 5

iqDerivedProcedures 1 procSeqControlledDataProcess 6
iqExtProcedureParam 2 pSCDPparametersId 1

notification 6 pSCDPeventsId 2
nDerivedProcedures 1 pSCDPexpired 1
nExtProcedureParam 2 pSCDPlocked 2

nStartInvocExt 1
nStartNegReturnExt 2 pSCDPdirectivesId 3

pSCDPresetDirective 1
throwEvent 7

teDerivedProcedures 1 procInformationQuery 7
teExtProcedureParam 2 pIQparametersId 1

teExecDirectiveReturnExt 1 pIQnamedLabelLists 1
pIQnamedLabelListsTypeExt 0

pIQeventsId 2
pIQdirectivesId 3

procCyclicReport 8
pCRparametersId 1

pCRnamedLabelLists 1
pCRminimumAllowedDeliveryCycle 2

pCRnamedLabelListsTypeExt 0

pCReventsId 2
pCRdirectivesId 3

procNotification 9
pNparametersId 1

pNnamedLabelLists 1
pNnamedLabelListsTypeExt 0

pNeventsId 2
pNdirectivesId 3

procThrowEvent 10
pTEparametersId 1
pTEeventsId 2
pTEdirectivesId 3

CSTS Specification Framework - this
branch encompasses only Framework
identifiers

IDs of the ASN.1 modules being part of
the CSTS Framework

Framework operations and
associated parameter
extensions

Ids of the basic and derived
procedures und extended parameters
specified in the Framework

Ids of the Framework procedures used in the
operations' standard header and Ids of
Framework Functional wesources

Figure K-4: CSTS Specification Framework Object Identifiers Tree

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page K-4 February 2021

This Recommended Standard defines the root OIDs of new CSTSes (figure K-5). It is the
responsibility of the service-defining organization to specify individual OIDs required by the
new service, including the OIDs of the derived procedures and of the syntax used by the
service (e.g., ASCII, XML, binary, …), as well as the OID of the reference towards the
Functional Resource type modeling the given service type.

services 2

xyzService (template) x
xyzDerivedServices 1
xyzExtendedServiceParameters 2
xyzServiceProcedures 3

xyzServiceProcedure a a
xyzSPaExtendedOpsParameters 1
xyzSPaExtendedProcParameters 2
xyzSPaEventsId 3
xyzSPaDirectivesId 4

xyzServiceModules 4

monitoredDataService 1
monitoredDataDerivedServices 1
monitoredDataExtendedServiceParameters 2
monitoredDataServiceProcedures 3
monitoredDataServiceModules 4

trackingDataService 2
trackingDataDerivedServices 1
trackingDataExtendedServiceParameters 2
trackingDataServiceProcedures 3
trackingDataServiceModules 4

forwardFrameService 3
forwardFrameDerivedServices 1
forwardFrameExtendedServiceParameters 2
forwardFrameServiceProcedures 3
forwardFrameServiceModules 4

Service type ids used in the BIND operation. Ids
of new services must be inserted in this branch
together with procedures and extended
parameters

Figure K-5: CSTS Services Object Identifiers Tree

As an example, the ASN.1 module, as it would have to be created for the xyzService
illustrated in figure K-5, is shown below. It should be noted that this module does not reflect
any real OID assignment; however, it is consistent with figure K-5. The formal requirements
for allocating the OIDs can be found in annex D.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page K-5 February 2021

The OIDs defined for individual services shall be used in the BIND operation for identifying
the service type (see ServiceType definition in F3.5).

CCSDS-XYZ-SERVICE-OBJECT-IDENTIFIERS
{ iso(1) identified-organization(3) standards-producing-organization(112)
 ccsds(4) css(4) csts(1) services(2) xyzService(200)
 xyzServiceModules(4) object-identifiers(1)
}

DEFINITIONS
IMPLICIT TAGS
::= BEGIN

IMPORTS services

FROM CCSDS-CSTS-OBJECT-IDENTIFIERS

 PublishedIdentifier
 FROM CCSDS-CSTS-COMMON-TYPES
;

-- Object Identifiers definition for the service types (see annex D)

-- ==
-- XYZ SERVICE OBJECT IDENTIFIERS

xyzService OBJECT IDENTIFIER ::= {services 200}
xyzDerivedServices OBJECT IDENTIFIER ::= {xyzService 1}
xyzExtendedServiceParameters OBJECT IDENTIFIER ::= {xyzService 2}
xyzServiceProcedures OBJECT IDENTIFIER ::= {xyzService 3}
xyzServiceModules OBJECT IDENTIFIER ::= {xyzService 4}
xyzServiceFrRef OBJECT IDENTIFIER ::= {xyzService 5}

XyzServiceFrRef ::= PublishedIdentifier

xyzExtSvcStartDataId OBJECT IDENTIFIER ::= {xyzExtendedServiceParameters 1}
xyzExtSvcTransferDataId OBJECT IDENTIFIER ::= {xyzExtendedServiceParameters 2}

badd OBJECT IDENTIFIER ::= {xyzServiceProcedures 1}
baddExtendedOpsParameters OBJECT IDENTIFIER ::= {badd 1}
baddExtendedProcParameters OBJECT IDENTIFIER ::= {badd 2}
baddEEventsId OBJECT IDENTIFIER ::= {badd 3}
baddDirectivesId OBJECT IDENTIFIER ::= {badd 4}

END

The OIDs defined for Cross Support Resources cover the cross-support functionalities
defined by CCSDS and the specific functionalities defined by the Agencies making use of
Cross Support Services (see figure K-6).

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page K-6 February 2021

crossSupportResources 2

crossSupportFunctionalities 1 agenciesFunctionalities 2

template functionalResourceType a template agency aaa a

parametersId 1 parametersId 1
eventsId 2 eventsId 2
directivesId 3 directivesId 3

Published Identifiers to refer to functional resources,
parameters, events or lists

This branch lists the OIDs of the Functional wesource
Types defined by CCSDS. The list is registered with SANA

This branch lists the OIDs of the Functional wesource
Types specifc to an Agency

This branch lists per Functional
Resource the object identifiers of the
parameters, events and directives
defined by CCSDS. The list is
registered with SANA

This branch lists per Functional Resource the object
identifiers of agency-specific parameters, events and
directives defined by the given agency

Figure K-6: CSTS Published Identifiers—Object Identifiers Tree

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page L-1 February 2021

ANNEX L

PUBLISHED IDENTIFIERS FOR FUNCTIONAL RESOURCES
REGISTERED UNDER THE CROSSSUPPORTFUNCTIONALITIES

NODE

(INFORMATIVE)

An important aspect of cross support between agencies is that both parties have the same
understanding of the applied configuration as well as of the status of service production and
service provisioning. The details of service production in general depend on the specificities
of the equipment deployed, and the make of equipment varies with the service provider. A
common understanding of configuration and status therefore must not be equipment specific.
Rather, a certain level of abstraction needs to be applied while maintaining an adequate level
of detail to overcome equipment-specific representation of the required information. To that
end, CCSDS has developed a data dictionary specifying parameters, events, and directives
needed to configure and monitor Cross Support Service production and provisioning.

In addition to identifying suitable parameters as such, these need to be grouped such that one
can model the existence of multiple instances of the same functionality. For example, within
the scope of a service package, two physical return links may be processed, one in X-band
and the other in Ka-band, each band handled by a different receiver. Consequently, one will
need two instances of the parameters associated with a receiver. The granularity of the
grouping of parameters must be chosen such that parameters associated with a functionality
of which several instances may be required are grouped accordingly. Such a functionality is
referred to as a Functional Resource.

Fundamental to the concept of Functional Resources is that each one represents a cohesive,
atomic set of space communication functionality with which can be associated single instances
of configuration parameters, monitored parameters, directives, and event notifications.

Functional Resources are not the physical resources (e.g., transmitters and receivers) that real
systems comprise. Rather, they represent the functions or capabilities that are provided by
those physical resources. A Functional Resource may be realized by several physical entities
that work cooperatively to perform that function. Alternatively, for some types of Functional
Resources, a single physical resource may be designed such that it instantiates several
Functional Resources.

The concept of Functional Resources has been adopted as a core concept of this
Recommended Standard, with standard Parameter Names being defined as having a
Functional Resource identifier component. This Recommended Standard also defines a
registration subtree for Functional Resource Type OIDs under the CCSDS registration tree.
Besides monitored parameters, the Functional Resource registration tree is used to register
OIDs for notifiable events and directives associated with each Functional Resource Type.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page L-2 February 2021

This annex is intended only to illustrate the registration tree by means of examples. The
normative tree is registered with SANA, and the examples provided in this annex may
deviate from the SANA registry, which will evolve over time, for example, because of the
introduction of novel capabilities.

The root element of the registration tree is the crossSupportFunctionalResources node (cf.
figure D-1). The branch under that node has a leaf for each of the Functional Resource
Types. For each Functional Resource Type, the associated parameters, notifiable events, and
directives are specified. A subset of the Functional Resources is shown in figure L-1.

crossSupportFunctionalities (1)

Antenna (10100)

Ccsds401SpaceLinkCarrierXmit (20100)

RngXmit(20101)

TcPlopSyncAndChnlEncode (30100)

FlfSyncChnlEncodeAndOidGen (30200)

Ccsds401SpaceLinkCarrierRcpt (20300)

RngAndDopplerExtraction (20301)

FlfSyncAndChnlDecode (30300)

TmAosMcDemux (40500)

TmAosVcDemux (40501)

Figure L-1: Example Cross Support Functional Resources

Since the number of parameters associated with a subcarrier on a return space link is
moderate, this subset of parameters of the rtn401SpaceLinkCarrierReception is taken here as
an example. For this Functional Resource, neither notifiable events nor directives are
discussed here. The parameters are shown in figure L-2.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page L-3 February 2021

Ccsds401SpaceLinkCarrierRcpt (20300)

ccsds401CarrierRcptSubcarrierDemodLoopBwdth (23)

ccsds401CarrierRcptSubcarrierLevelEstimate (25)

ccsds401CarrierRcptLockStat (14)

ccsds401CarrierRcptNominalSubcarrierFreq (21)

ccsds401CarrierRcptActualSubcarrierFreq (22)

Figure L-2: Subcarrier Related Parameters of the Rtn401SpaceLinkCarrierRecpt
Functional Resource

The structure shown so far illustrates how the OIDs are constructed, and with that
information, individual Functional Resources and individual parameters can be accessed. For
the information exchange between the parties participating in cross support, more
information on the parameters is required. As specified in E11.1, for each parameter, event,
and directive, the following items are to be specified:

a) a classifier;

b) a semantic definition;

c) a name in the form of an OID;

NOTE – If a suitable parameter already exists on a subbranch different from the one
where the parent Functional Resource is registered, the OID specified on the
other subbranch will be used to name such parameter.

d) a syntax specification;

NOTE – The syntax specification shown in tables L-1 and L-2 show how the
parameter will be presented in the return of the GET operation querying that
parameter. The Functional Resource specification will only provide the type
specification, for example, INTEGER (-20000 .. 0).

e) the value range;

f) the engineering unit(s);

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page L-4 February 2021

g) a flag indicating if the definition has been deprecated;

NOTE – The deprecation flag indicates that at least one more recent version of the
specification of the given parameter, event, or directive exists. The deprecated
version can no longer be expected to be supported by providers of CSTSes.

h) a flag indicating if the given parameter can configured, that is, if the Functional
Resource has a directive that permits the setting of the value of this parameter;

NOTE – This flag does not imply that in a specific cross-support scenario the given
parameter can actually be set or modified by a CSTS user. The service
provider may not have implemented such control capability or may decide
not to grant such control in the context of a specific cross-support scenario.
The parameters that can be configured by a CSTS user should be identified in
a service agreement governing the cross-support arrangement.

i) the creation date.

Conceptually, all parameters specified for a given Functional Resource Type can be
monitored. However, this does not imply that, in a specific cross-support scenario, the given
parameter can actually be monitored by a CSTS user. The service provider may not generate
that parameter or may decide not to disclose it in the context of a specific cross-support
scenario. The parameters that are accessible by a CSTS user should be identified in a service
agreement governing the cross-support arrangement.

Tables L-1 and L-2 illustrate this using two parameters of the Rtn401SpaceLinkCarrierRecpt
Functional Resource Type. The semantic definition in table L-1 shows that the parameter is
expressed in dB. This is not an engineering unit per se, but a way to scale a dimensionless ratio. To
ensure that the applied scaling is not overlooked, dB is shown as the applicable engineering unit.

Table L-1: Specification of the Subcarrier Level Estimate Parameter

Classifier ccsds401CarrierRcptSubcarrierLevelEstimate
Authorizing Entity CSS Area
Creation Date 2020-03-30
Deprecation Flag Not deprecated
Configured Flag No
Object Identifier 1 3 112 4 4.2 1 20300 1 25 1
Semantic Definition This parameter reports the subcarrier to carrier power ratio expressed in

1/100 dBc. If the applicable modulation scheme does not use a subcarrier,
this parameter shall be flagged as 'undefined'.

Syntax Specification
(see CCSDS 921.1)

‘QualifiedValue’: ‘valid’: ‘‘TypeAndValue’: ‘Embedded’: ’EMBEDDED PDV’. The
PDV is expressed as the ASN.1 type
Ccsds401CarrierRcptSubcarrierLevelEstimate ::= INTEGER (-20000 .. 0)

Value Range Implied by syntax specification
Engineering Unit(s) 1/100 dBc

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page L-5 February 2021

Table L-2: Specification of the Subcarrier Lock Status Parameter

Classifier ccsds401CarrierRcptLockStat

Authorizing Entity CSS Area

Creation Date 2020-03-30

Deprecation Flag Not deprecated

Configured Flag No

Object Identifier 1 3 112 4 4 2 1 20300 1 14 1

Semantic Definition This parameter reports the lock status for the carrier, and, if applicable, for
the subcarrier, and for the symbol stream.

Syntax Specification
(see CCSDS 921.1)

‘QualifiedValue’: ‘valid’: ‘TypeAndValue’: ‘Embedded’: ‘EMBEDDED PDV’.
The PDV carries the ASN.1 type
Ccsds401CarrierRcptLockStat ::= LockStat
LockStat ::= SEQUENCE
{ carrierLock ENUMERATED
 { notLocked (0)
 , locked (1)
 }
, subcarrierLock ENUMERATED
 { notLocked (0)
 , locked (1)
 , notApplicable (2)
 }
, symbolStreamLock ENUMERATED
 { notLocked (0)
 , locked (1)
 }
}

Value Range Implied by syntax specification

Engineering Unit(s) N/A

All the above shown information items can be found for all parameters in the associated
registry maintained by SANA.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page M-1 February 2021

ANNEX M

ASN.1 CONSTRUCTION OF QUALIFIED PARAMETERS

(INFORMATIVE)

M1 INTRODUCTION

M1.1 OVERVIEW

Parameters of Cross Support Transfer Services can be represented in two forms: as CSTS
procedure parameters or as Functional Resource parameters.

M1.2 CSTS PROCEDURE PARAMETER FORM

The CSTS procedure parameter form is used to represent the parameters of the procedures of
the CSTS in the operations that are executed on the interface between the provider of an
instance of that CSTS and the peer user entity of that service instance. CSTS procedure
parameters are identified to the granularity of the individual procedure type (e.g., Data
Processing procedure) and procedure instance (prime, secondary instance, or association
control). Every implementation of a CSTS must support access (e.g., through inclusion of a
Cyclic Report and/or Information Query procedure) to the CSTS procedure parameters that
are defined for that CSTS.

NOTE – A CSTS may have optional procedures that may or may not be present in a given
implementation. For such a CSTS, an implementation is only required to include
the CSTS procedure parameters that belong to the procedures that are
implemented.

The CSTS procedure form of a parameter can be thought of as an internal representation of
the parameter, in that it is a form used within the association between the service provider
and service user.

CSTS procedure parameters use the Object Identifiers (OIDs) assigned to the procedure
parameter identifiers and associated data types that are defined in the specification of the
given CSTS. These procedure parameters may be inherited from the parent procedures
specified in this Specification Framework (e.g., the Data Processing procedure configuration
parameters specified in table 4-26), or they may be defined for the derived or service-specific
procedures of the CSTS.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page M-2 February 2021

M1.3 FUNCTIONAL RESOURCE PARAMETER FORM

The Functional Resource parameter form is used to represent parameters of the Functional
Resource that represents the CSTS instance as a whole. The Functional Resource form is
used to represent the parameters of a Functional Resource as accessed through means that are
external to that Functional Resource. In particular, the Functional Resource form of
parameters is used to access the service management parameters of those Functional
Resources, and is the form of representation used by the Monitored Data CSTS
(reference [I11]) and the planned Service Control CSTS.

Unlike the CSTS procedure parameter form, which identifies procedure details which are
specific to CSTSes, the Functional Resource form presents a “black box” view of the
parameters because this form is used to represent parameters of all Functional Resource
types (of which the CSTSes are a subset). The Functional Resource form identifies the
Functional Resource type and Functional Resource Instance Number (FRIN) of the
Functional Resource instance to which the parameter belongs.

The Functional Resource form of a parameter can be thought of as the external representation
of the parameter, in that it is the form used to represent the parameter to entities outside of
the Functional Resource itself.

Functional Resource parameters use the OIDs assigned to the parameter identifiers and
associated data types that are specified in the definition of the given Functional Resource in
the SANA registry named ‘Functional Resources’ located at
https://sanaregistry.org/r/functional_resources.

M2 QUALIFIED PARAMETERS IN THE CSTS PROCEDURE PARAMETER AND
FUNCTIONAL RESOURCE PARAMETER FORMS

M2.1 OVERVIEW

As specified in annex E, a qualified-parameter parameter contains for each reported
parameter the following information:

a) the Parameter Name, which is defined as the combination of its Parameter Identifier
and either its Functional Resource Name or its procedure name;

b) the parameter type;

c) the parameter value(s); and

d) the parameter qualifier.

The Parameter Name element of the qualified parameter contains the Functional Resource
Name if the parameter is being reported in the context of the Functional Resource that
represents the CSTS or the procedure name if the parameter is a procedure parameter that is
being reported to the peer user entity of the CSTS provider instance.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page M-3 February 2021

The following subsections provide examples of the ASN.1 structure of qualified parameters,
first for the CSTS procedure parameter form, followed by the Functional Resource parameter
form. The examples use the same underlying parameter, represented in the first case as
qualified parameter using the CSTS procedure parameter form, and in the second case using
the functional resource form.

The CSTS procedure parameter and Functional Resource form examples use the
initiator-identifier parameter of the Association Control (AC) procedure of the
Forward Frame CSTS. This is a configuration parameter that is inherited from the
Framework AC procedure (see table 4-2). The Forward Frame CSTS configures the AC
procedure parameter initiator-identifier through the service management
parameter ffInitiatorId. Both examples illustrate the reporting of ‘valid’ values of the
parameter being reported.

M2.2 CSTS PROCEDURE PARAMETER FORM OF THE QUALIFIED
PARAMETER FOR THE INITIATOR-IDENTIFIER PARAMETER

Beginning with the ASN.1 types from F3.3 that are used to define the qualified parameter:

QualifiedParameter ::= SEQUENCE
{ parameterName Name
, qualifiedValues SequenceOfQualifiedValue
}

Name ::= SEQUENCE
{ fRorProcedureName FRorProcedureName
, paramOrEventOrDirectiveId PublishedIdentifier
}

FRorProcedureName ::= CHOICE
{ functionalResourceName [0] FunctionalResourceName
, procedureName [1] ProcedureName
}

ProcedureName ::= SEQUENCE
{ procedureType ProcedureType
, procedureRole CHOICE
 { primeProcedure [0] NULL
 , secondaryProcedure [1] IntPos
 , associationControl [2] NULL
 }
}

-- The ProcedureType is an Object Identifier, the allocation of which is
-- under control of CCSDS. It is declared in the ASN.1 module
-- CCSDS-CSTS-OBJECT-IDENTIFIERS (see F3.1).
ProcedureType ::= OBJECT IDENTIFIER

PublishedIdentifier ::= OBJECT IDENTIFIER

SequenceOfQualifiedValue ::= SEQUENCE OF QualifiedValue

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page M-4 February 2021

QualifiedValue ::= CHOICE
{ valid [0] TypeAndValue -- Valid value
, unavailable [1] NULL -- Unknown or unavailable value
, undefined [2] NULL -- Undefined in the context
, error [3] NULL -- Processing resulted in an error
}

TypeAndValue ::= Embedded

Embedded ::= EMBEDDED PDV

IntPos ::= INTEGER (1 .. 4294967295)

As described in F2.3, only the ‘syntax’ choice of the EMBEDDED PDV type is applicable to
CSTSes, so the effective form of that data type is:

EMBEDDED PDV ::= [UNIVERSAL 11] SEQUENCE
{ identification CHOICE
 { syntaxes SEQUENCE
 { abstract OBJECT IDENTIFIER
 , transfer OBJECT IDENTIFIER
 }
 , syntax OBJECT IDENTIFIER
 , presentation-context-id INTEGER
 , context-negotiation SEQUENCE
 { presentation-context-id INTEGER
 , transfer-syntax OBJECT IDENTIFIER
 }
 , transfer-syntax OBJECT IDENTIFIER
 , fixed NULL
 }
, data-value OCTET STRING
}

The procedure that contains the parameter is the FF-CSTS AC procedure, which is directly
adopted from the Framework. From F3.1, we get the OID for the ProcedureType for the AC
procedure:

associationControl OBJECT IDENTIFIER ::= {procedures 1}

Expanding the OID for the associationControl procedure type results in

{css (1 3 112 4 4} csts(1) framework(1) procedures(3) 1}
= {1.3.112.4.4.1.1.3.1}

Because the FF-CSTS directly adopts the Framework AC procedure, the FF-CSTS AC
procedure uses the initiator-identifier parameter from the Framework AC
procedure. Because this is the CSTS procedure parameter form of the qualified parameter,
the OID for the AC procedure parameter pACinitiatorId (table 4-2 and F3.16) is used
for both the parameterName and EMBEDDED PDV syntax OIDs (pACinitiatorId is

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page M-5 February 2021

the name of the procedure parameter as well as the OID associated with the data type
PACinitiatorId). From F3.16:

pACinitiatorId OBJECT IDENTIFIER ::= {pACparametersId 1}
PACinitiatorIdType ::= AuthorityIdentifier

Expanding the OID for pACinitiatorId results in

{css(1 3 112 4 4) csts(1) framework(1) fwProceduresFunctionalities(4)
procAssociationControl(1) pACparametersId(1) 1} = {1.3.112.4.4.1.1.4.1.1.1}

For the AC procedure, the procedure role is ’associationControl’.

Expanding the parameterName element of the QualifiedParameter type and
eliminating (by strikethrough) the choices that are not applicable to the procedure parameter
form:

parameterName SEQUENCE
{ fRorProcedureName CHOICE
 { functionalResourceName [0] FunctionalResourceName
 , procedureName [1] SEQUENCE
 { procedureType OBJECT IDENTIFIER = {1.3.112.4.4.1.1.3.1}

 –- OID for Association Control procedure
 , procedureRole CHOICE
 { primeProcedure [0] NULL
 , secondaryProcedure [1] IntPos
 , associationControl [2] NULL
 }
 }
 }
, paramOrEventOrDirectiveId OBJECT IDENTIFIER = {1.3.112.4.4.1.1.4.1.1.1}
-- OID for pACinitiatorId
}

For this example, the value of the parameter initiator-identifier is ‘XenoFfUser’,
encoded as ASN.1 type VisibleString where the constraint of the alphabet does not permit
spaces to be part of the string. The related ASN.1 Type specifications are from F3.3

AuthorityIdentifier ::= IdentifierString (SIZE (3 .. 16))

IdentifierString ::= VisibleString (FROM (ALL EXCEPT " "))

Expanding the qualifiedValues element of the QualifiedParameter type and
excluding (by strikethrough) the choices that are not relevant to the ‘valid’ case :

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page M-6 February 2021

qualifiedValues SEQUENCE OF
 CHOICE – The parameter value is valid
 { valid [0] [UNIVERSAL 11] SEQUENCE
 { identification CHOICE

 { syntaxes SEQUENCE
 { abstract OBJECT IDENTIFIER
 , transfer OBJECT IDENTIFIER
 }
 , syntax OBJECT IDENTIFIER = {1.3.112.4.4.1.1.4.1.1.1

 -- OID for pACinitiatorId

 , presentation-context-id INTEGER
 , context-negotiation SEQUENCE
 { presentation-context-id INTEGER
 , transfer-syntax OBJECT IDENTIFIER
 }
 , transfer-syntax OBJECT IDENTIFIER
 , fixed NULL
 }

 , data-value OCTET STRING = (‘1A0A58656E6F466655736572’H)
 -- The octet string in this case (BER
 -- encoding) is
 -- 1A 0A 58 65 6E 6F 46 66 55 73 65 72 hex
 -- where 1A specifies the data type
 -- (VisibleString), 0A is the short

 -- form length of the value (10 octets) and
 -- 58 65 6E 6F 46 66 55 73 65 72

 -- is the ASCII representation of the value
 -- (the string ‘XenoFfUser’) of the

 -- PACinitiatorId parameter.
 }
 , unavailable [1] NULL -- Unknown or unavailable value
 , undefined [2] NULL -- Undefined in the context
 , error [3] NULL -- Processing resulted in an error
 }

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page M-7 February 2021

Combining the parameterName and qualifiedValues elements into the
QualifiedParameter type, and again eliminating the non-applicable choices:

QualifiedParameter ::= SEQUENCE
{ parameterName SEQUENCE
 { fRorProcedureName CHOICE
 { functionalResourceName [0] FunctionalResourceName
 , procedureName [1] SEQUENCE
 { procedureType OBJECT IDENTIFIER = {1.3.112.4.4.1.1.3.1}

 –- OID for Association Control procedure
 , procedureRole CHOICE
 { primeProcedure [0] NULL
 , secondaryProcedure [1] IntPos
 , associationControl [2] NULL
 }
 }
 }
 }

 , paramOrEventOrDirectiveId OBJECT IDENTIFIER = {1.3.112.4.4.1.1.4.1.1.1} -
- OID for pACinitiatorId

}
, qualifiedValues SEQUENCE OF
 CHOICE – The parameter value is valid
 { valid [0] [UNIVERSAL 11] SEQUENCE
 { identification CHOICE

 { syntaxes SEQUENCE
 { abstract OBJECT IDENTIFIER
 , transfer OBJECT IDENTIFIER
 }
 , syntax OBJECT IDENTIFIER =

 {1.3.112.4.4.1.1.4.1.1.1} -- OID for pACinitiatorId
 , presentation-context-id INTEGER
 , context-negotiation SEQUENCE
 { presentation-context-id INTEGER
 , transfer-syntax OBJECT IDENTIFIER
 }
 , transfer-syntax OBJECT IDENTIFIER
 , fixed NULL

 }
 , data-value OCTET STRING = (‘1A0A58656E6F466655736572’H)
 }
 , unavailable [1] NULL -- Unknown or unavailable value
 , undefined [2] NULL -- Undefined in the context
 , error [3] NULL -- Processing resulted in an error
 }
}

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page M-8 February 2021

M2.3 FUNCTIONAL RESOURCE PARAMETER FORM OF THE QUALIFIED
PARAMETER FOR THE INITIATOR-IDENTIFIER PARAMETER

The Functional Resource form of the qualified parameter uses the same ASN.1 data types
and OIDs as the CSTS procedure parameter form, except that instead of the
ProcedureName and ProcedureType data types the FunctionalResourceName,
FunctionalResourceInstanceNumber, and FunctionalResourceType data
types are used. From F3.3:

FunctionalResourceName ::= SEQUENCE
{ functionalResourceType FunctionalResourceType
, functionalResourceInstanceNumber FunctionalResourceInstanceNumber
}

FunctionalResourceInstanceNumber ::= IntPos

FunctionalResourceType ::= OBJECT IDENTIFIER

For the Forward Frame CSTS Provider Functional Resource, the data type of the
ffInitiatorId parameter is FfInitiatorId, defined as

FfInitiatorId ::= AuthorityIdentifier

where

AuthorityIdentifier ::= VisibleString (FROM (ALL EXCEPT " ")) (SIZE (3 .. 16))

For the Functional Resource form of the parameter name, the value of the
paramOrEventOrDirectiveId element is the OID assigned to the ffInitiatorId
parameter of the Forward Frame CSTS Provider Functional Resource. For the purposes of
this example, the following OID assignments are assumed for the Functional Resource Type
of the Forward Frame CSTS Provider Functional Resource (classifier ffCstsProvider),
the ffInitiatorId parameter, and the ffInitiatorId data type:

a) the OID for ffCstsProvider is {1.3.112.4.4.2.1.80300},

b) the OID assigned to ffInitiatorId is {1.3.112.4.4.2.1.80300.1.4.1}, and

c) for Functional Resource parameters, the data type of the parameter has its own OID.
The FfInitiatorId data type has the “typeOID” (syntax OID)
{1.3.112.4.4.2.1.80300.1.4.1.1}.

For this example, the FRIN is arbitrarily assumed to be 3.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page M-9 February 2021

Expanding the parameterName element of the QualifiedParameter type and
excluding (by strikethrough) the choices that are not relevant to the Functional Resource
form:

parameterName SEQUENCE
{ fRorProcedureName CHOICE –- only the functionalResourceName choice
 –- applies
 { functionalResourceName [0] SEQUENCE
 { functionalResourceType PublishedIdentifier = {1.3.112.4.4.2.1.80300}
 –- OID for FR Type FwdFrameCstsProvider
 , functionalResourceInstanceNumber IntPos = 3
 }
 , procedureName [1] ProcedureName
 }
, paramOrEventOrDirectiveId OBJECT IDENTIFIER = {1.3.112.4.4.2.1.80300.1.4.1}
 –- OID for ffInitiatorId parameter
}

NOTE – The Functional Resource form of the qualified value uses a separate ‘typeOID’
value for the syntax subelement of the qualifiedValues element. This is
different from the CSTS procedure form of the qualified parameter, which uses
the same procedure parameter OID for both the
paramOrEventOrDirectiveId subelement of the parameterName
element and the syntax subelement of the qualifiedValue element.

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page M-10 February 2021

Expanding the qualifiedValues element of the QualifiedParameter type and
excluding (by strikethrough) the choices that are not relevant to the ‘valid’ case:

qualifiedValues SEQUENCE OF
 CHOICE – The parameter valuie is valid
 { valid [0] [UNIVERSAL 11] SEQUENCE
 { identification CHOICE

 { syntaxes SEQUENCE
 { abstract OBJECT IDENTIFIER
 , transfer OBJECT IDENTIFIER
 }
 , syntax OBJECT IDENTIFIER =

 {1.3.112.4.4.2.1.80300.1.4.1.1} -- OID for FfInitiatorId data type
 , presentation-context-id INTEGER
 , context-negotiation SEQUENCE
 { presentation-context-id INTEGER
 , transfer-syntax OBJECT IDENTIFIER
 }
 , transfer-syntax OBJECT IDENTIFIER
 , fixed NULL
 }

 , data-value OCTET STRING = (‘1A0A58656E6F466655736572’H)
 -- The octet string in this case (BER
 -- encoding) is
 -- 1A 0A 58 65 6E 6F 46 66 55 73 65 72 hex
 -- where 1A specifies the data type
 -- (VisibleString), 0A is the short

 -- form length of the value (10 octets) and
 -- 58 65 6E 6F 46 66 55 73 65 72
 -- is the ASCII representation of value (the
 -- string ‘XenoFfUser’) of the
 -- FfInitiatorId parameter.
 }

 , unavailable [1] NULL -- Unknown or unavailable value
 , undefined [2] NULL -- Undefined in the context
 , error [3] NULL -- Processing resulted in an error
 }

CCSDS RECOMMENDED STANDARD FOR CSTS SPECIFICATION FRAMEWORK

CCSDS 921.1-B-2 Page M-11 February 2021

Combining the parameterName and qualifiedValues elements into the
QualifiedParameter type:

QualifiedParameter ::= SEQUENCE
{ parameterName SEQUENCE
 { fRorProcedureName CHOICE –- only the functionalResourceName choice
 –- applies
 { functionalResourceName [0] SEQUENCE

 { functionalResourceType PublishedIdentifier = {1.3.112.4.4.2.1.80300}
 –- OID for FR Type FwdFrameCstsProvider
 , functionalResourceInstanceNumber IntPos = 3
 }
 , procedureName [1] ProcedureName
 }
 , paramOrEventOrDirectiveId OBJECT IDENTIFIER = {1.3.112.4.4.2.1.80300.1.4.1}
 –- OID for ffInitiatorId parameter
 }
, qualifiedValues SEQUENCE OF
 CHOICE – The parameter value is valid
 { valid [0] [UNIVERSAL 11] SEQUENCE
 { identification CHOICE

 { syntaxes SEQUENCE
 { abstract OBJECT IDENTIFIER
 , transfer OBJECT IDENTIFIER
 }
 , syntax OBJECT IDENTIFIER =

 (1.3.112.4.4.2.1.80200.1.4.1.1) -- OID for FfInitiatorId data type
 , presentation-context-id INTEGER
 , context-negotiation SEQUENCE
 { presentation-context-id INTEGER
 , transfer-syntax OBJECT IDENTIFIER
 }
 , transfer-syntax OBJECT IDENTIFIER
 , fixed NULL

 }
 , data-value OCTET STRING = (‘1A0A58656E6F466655736572’H)
 -- (‘1A0A58656E6F466655736572’H) (‘020105’H)
 -- is the BER encoding of
 -- VisibleString (value of ‘XenoFfUser’),
 -- which is the base type of the
 -- FfInitiatorId data type.
 }
 , unavailable [1] NULL -- Unknown or unavailable value
 , undefined [2] NULL -- Undefined in the context
 , error [3] NULL -- Processing resulted in an error
 }
}

	AUTHORITY
	STATEMENT OF INTENT
	FOREWORD
	DOCUMENT CONTROL
	CONTENTS
	1 INTRODUCTION
	1.1 PURPOSE
	1.2 SCOPE
	1.3 APPLICABILITY
	1.4 RATIONALE
	1.5 DOCUMENT STRUCTURE
	1.6 DEFINITIONS
	1.7 REFERENCES

	2 DESCRIPTION OF CROSS SUPPORT SERVICES
	2.1 OVERVIEW
	2.2 CROSS SUPPORT REFERENCE MODEL
	2.3 SERVICE MANAGEMENT
	2.4 ELEMENTS OF THE CSTS SPECIFICATION FRAMEWORK
	2.5 PRINCIPLES OF USING THE CSTS SPECIFICATION FRAMEWORK
	2.6 PROTOCOL DESCRIPTION

	3 COMMON OPERATIONS
	3.1 OVERVIEW
	3.2 GENERAL CONSIDERATIONS
	3.3 STANDARD OPERATION HEADER
	3.4 BIND (CONFIRMED)
	3.5 UNBIND (CONFIRMED)
	3.6 PEER-ABORT (UNCONFIRMED)
	3.7 START (CONFIRMED)
	3.8 STOP (CONFIRMED)
	3.9 TRANSFER-DATA (UNCONFIRMED)
	3.10 PROCESS-DATA (UNCONFIRMED / CONFIRMED)
	3.11 NOTIFY (UNCONFIRMED)
	3.12 GET (CONFIRMED)
	3.13 EXECUTE-DIRECTIVE (ACKNOWLEDGED)

	4 PROCEDURES
	4.1 OVERVIEW
	4.2 COMMON PROCEDURES BEHAVIOR
	4.3 ASSOCIATION CONTROL
	4.4 UNBUFFERED DATA DELIVERY
	4.5 BUFFERED DATA DELIVERY
	4.6 DATA PROCESSING
	4.7 BUFFERED DATA PROCESSING
	4.8 SEQUENCE-CONTROLLED DATA PROCESSING
	4.9 INFORMATION QUERY
	4.10 CYCLIC REPORT
	4.11 NOTIFICATION
	4.12 THROW EVENT

	ANNEX A IMPLEMENTATION CONFORMANCE STATEMENT PROFORMA (NORMATIVE)
	ANNEX B PRODUCTION STATUS AND CONFIGURATION (NORMATIVE)
	ANNEX C QUALIFIED PARAMETERS (NORMATIVE)
	ANNEX D OBJECT IDENTIFIERS DEFINITION (NORMATIVE)
	ANNEX E COMPOSITION OF PARAMETER, EVENT, AND DIRECTIVE NAMES AND PARAMETER AND EVENT LISTS (NORMATIVE)
	ANNEX F DATA TYPES DEFINITION (NORMATIVE)
	ANNEX G SERVICE STATE TABLES (NORMATIVE)
	ANNEX H SECURITY, SANA, AND PATENT CONSIDERATIONS (INFORMATIVE)
	ANNEX I INFORMATIVE REFERENCES (INFORMATIVE)
	ANNEX J ABBREVIATIONS (INFORMATIVE)
	ANNEX K OBJECT IDENTIFIERS (INFORMATIVE)
	ANNEX L PUBLISHED IDENTIFIERS FOR FUNCTIONAL RESOURCES REGISTERED UNDER THE CROSSSUPPORTFUNCTIONALITIES NODE (INFORMATIVE)
	ANNEX M ASN.1 CONSTRUCTION OF QUALIFIED PARAMETERS (INFORMATIVE)

