

Draft Recommendation for
Space Data System Standards

SPACECRAFT ONBOARD
INTERFACE SERVICES—
XML SPECIFICATION FOR

ELECTRONIC DATA SHEETS

DRAFT RECOMMENDED STANDARD

CCSDS 876.0-P-1.1

PINK SHEETS
July 2021

Draft Recommendation for
Space Data System Standards

SPACECRAFT ONBOARD
INTERFACE SERVICES—
XML SPECIFICATION FOR

ELECTRONIC DATA SHEETS

DRAFT RECOMMENDED STANDARD

CCSDS 876.0-P-1.1

PINK SHEETS
July 2021

DRAFT RECOMMENDED STANDARD FOR XML ELECTRONIC DATA SHEETS

CCSDS 876.0-P-1.1 Page 1-6 July 2021

[16] Spacecraft Onboard Interface Services—Subnetwork Memory Access Service. Issue 1.
Recommendation for Space Data System Practices (Magenta Book), CCSDS 852.0-M-1.
Washington, D.C.: CCSDS, December 2009.

[17] Spacecraft Onboard Interface Services—Subnetwork Synchronisation Service. Issue 1.
Recommendation for Space Data System Practices (Magenta Book), CCSDS 853.0-M-1.
Washington, D.C.: CCSDS, December 2009.

[18] C. Bormann and P. Hoffman. Concise Binary Object Representation (CBOR). RFC
7049. Reston, Virginia: ISOC, October 2013.

NOTE – Informative references are contained in annex D.

DRAFT RECOMMENDED STANDARD FOR XML ELECTRONIC DATA SHEETS

CCSDS 876.0-P-1.1 Page 2-3 July 2021

2.3 PURPOSE AND OPERATION OF SOIS ELECTRONIC DATA SHEETS

A SEDS is intended to be a machine-understandable mechanism for describing onboard
components, as more fully described in the SOIS Green Book (reference [D2]).

The SEDS is intended to replace the traditional interface control documents and proprietary
data sheets which accompany a device and are necessary to determine the operation of the
device and how to communicate with it. The SEDS could then be used for a wide variety of
purposes, whilst ensuring consistency and completeness of information:

a) generating human-readable documentation;

b) specifying interfaces to the device;

c) automatically generating software implementing the relevant parts of the onboard
software for the device;

d) automatically generating device-interface-simulation software for use in test or
device-simulation software;

e) transforming the device functional interface into telecommands and telemetry suitable
for processing by a command and data handling system onboard and on the ground;

f) capturing interface information for the spacecraft database;

g) providing a common definition to human-friendly authoring mechanisms for SEDS
instances;

h) providing the common exchange medium between organizations for the above use
cases.

Further information on the potential uses of SEDS can be found in the SOIS Green Book
(reference [D2]).

In order to be able to relate the elements of the data sheet to physical (and nonphysical)
concepts, and to promote standardization and interoperability, a SANA DoT (reference [1])
provides a core ontology for data sheet authors and users. These core semantic terms
effectively form part of the language that is used to write SEDS. Whenever the semantics
provided by the SANA DoT are insufficient, a data sheet author may utilize an additional
user-defined DoT, which must then be supplied with the data sheet itself. This provides a
standard, flexible, and extensible mechanism for capturing the semantics of device operation
in a machine-understandable form.

The SEDS schema enumerates some external standards and conventions so that these
standards and conventions may be associated with data in a SEDS instance. Examples are
error control check words, math operations, and encoding schemes. These enumerations will
never cover the variety of such standards and conventions, so the SEDS schema allows for
extension of these enumerations. The extensions needed within a project to support a local
toolchain can be written into an auxiliary schema, which the SEDS schema includes. The

DRAFT RECOMMENDED STANDARD FOR XML ELECTRONIC DATA SHEETS

CCSDS 876.0-P-1.1 Page 3-3 July 2021

3.2 ELECTRONIC DATA SHEETS AND THE ASSOCIATED SCHEMA

Device Datasheet

A Device

Device-Specific
Definitions

Package File 3

Project Standards

Package File 2

Industry Standards

Package File 1

CCSDS Standards

Figure 3-3: Device Datasheets and Package Files

Figure 3-3 shows the relationship among SEDS files. (It is not a syntax diagram.) A Device
Datasheet contains all known information about a particular device or class of devices. It
may reference one or more Package Files that capture an independently managed subset of
that data, such as

– a standard or specification it supports;

– a product line it belongs to;

– a compatibility mode it is capable of; or

– a replaceable hardware or software part it contains or manages.

A Package File may describe a composable unit of software or hardware, in the manner of a
Device Datasheet, but without the Device element, and without XInclude (reference [5]).
A Package File may contain only metadata or data types for a platform, for a project, or for
universal reference.

3.2.1 The basic unit of data exchange of SOIS device information is an XML document
known as a device datasheet or package file.

3.2.2 A device datasheet or package file shall be de defined by a single top-level XML file.

3.2.3 Any files referenced by a device datasheet shall be XML package files compliant to
the PackageFile element of the SEDS schema.

DRAFT RECOMMENDED STANDARD FOR XML ELECTRONIC DATA SHEETS

CCSDS 876.0-P-1.1 Page 3-7 July 2021

3.4.4 The Category element shall contain one or more child elements, each of which is
either a Category element or MetadataValueSet element.

3.4.5 A MetadataValueSet element shall contain one or more child elements, each of
which is either a DateValue element, a FloatValue element, an IntegerValue element, or
a StringValue element.

3.4.6 The DateValue, FloatValue, IntegerValue, and StringValue elements are all
based on FieldType.

3.4.7 DateValue and StringValue elements shall contain a value attribute specifying the
value of the metadata as a literal, per table 3-1.

3.4.8 FloatValue and IntegerValue elements may contain a value attribute specifying
the value of the metadata as a literal, per table 3-1.

3.4.9 If a FloatValue or IntegerValue element does not contain a value attribute, the
body of the element shall specify a MathOperation element, as described in 3.15.32 below,
or a Conditional element, as described in 3.15.37 below, to describe how the value should
be calculated.

DRAFT RECOMMENDED STANDARD FOR XML ELECTRONIC DATA SHEETS

CCSDS 876.0-P-1.1 Page 3-11 July 2021

Table 3-1: Data Types, Encodings, Ranges, and Literals

Data Type Encoding Type Range Types Literal Syntax
BinaryDataType xs:hexBinary

BooleanDataType BooleanDataEncoding xs:boolean

EnumeratedDataType IntegerDataEncoding EnumeratedRange xs:string, matching enumeration
label.

FloatDataType FloatDataEncoding PrecisionRange
MinMaxRange

xs:float

IntegerDataType IntegerDataEncoding MinMaxRange xs:integer

StringDataType StringDataEncoding EnumeratedRange xs:string

SubRangeDataType as base type as base type, within range

3.7.2 A FloatDataEncoding or IntegerDataEncoding element may carry a byteOrder
attribute specifying a value of

a) bigEndian, the default, for values which are to be encoded most significant byte first;
or

b) littleEndian for values which are to be encoded least significant byte first.

NOTE – The littleEndian specification applies only to data types whose size is a
multiple of 8 bits.

3.7.3 A BooleanDataEncoding element shall carry a sizeInBits attribute which specifies
the size, in bits, of the encoded data as a positive integer.

3.7.4 A BooleanDataEncoding element may carry a falseValue attribute which specifies
the value that corresponds to logical falsehood, with options

a) zeroIsFalse (the default); and

b) nonZeroIsFalse.

3.7.5 An IntegerDataEncoding element shall carry an encoding attribute which has a
value of

a) unsigned, for an unsigned value;

b) signMagnitude, for an encoding with a separate sign bit (the most significant bit is
the sign bit, with 1 indicating negative);

c) twosComplement, for twos complement;

d) onesComplement, for ones complement;

e) BCD, for a natural unsigned binary coded decimal, where each byte is a decimal digit
encoded as binary; or

DRAFT RECOMMENDED STANDARD FOR XML ELECTRONIC DATA SHEETS

CCSDS 876.0-P-1.1 Page 3-12 July 2021

f) packedBCD, where each byte contains two decimal digits encoded as binary, followed
by an optional sign nibble. A negative sign is 1011 or 1101; a positive sign is 1010,
1100, 1110, 1111, or omitted.

3.7.6 An IntegerDataEncoding element shall carry a sizeInBits attribute which
specifies the size, in bits, of the encoded data as a positive integer.

3.7.7 The size in bits of a BCD encoding shall be a multiple of 8. The size in bits of a
packedBCD shall be a multiple of 4. The size in bits of both forms of binary coded decimals
is a fixed value, so all high-order digits that are zero shall be present to fill the fixed size in
bits.

3.7.8 A FloatDataEncoding element shall carry an encodingAndPrecision attribute
which has a value of either

a) IEEE754_2008_single;

b) IEEE754_2008_double;

c) IEEE754_2008_quad;

d) MILSTD_1750A_simple; or

e) MILSTD_1750A_extended.

NOTE – These represent the supported sizes of IEEE (reference [6]) and MIL-STD-
1750A (reference [7]).

3.7.9 A FloatDataEncoding element shall carry a sizeInBits attribute which specifies
the size, in bits, of the encoded data as a positive integer.

3.7.10 A StringDataType shall carry a length attribute which defines the maximum
possible length of the string, in bytes.

3.7.11 A StringDataType may carry a fixedLength attribute which, if ‘false’, indicates
that the string can be shorter than the value specified by the length attribute.

NOTE – Specification of fixedLength="false" indicates a data type that occupies a
variable amount of memory. When such a data type is an entry in a container,
then the container is of variable length. (See 4.8 for details about string lengths.)

3.7.12 A StringDataEncoding element may carry an encoding attribute which has a value
of either

a) UTF-8, specifying Unicode UTF-8 encoding (reference [8]); or

b) ASCII, the default, specifying US ASCII encoding (reference [9]).

3.7.13 The optional terminationCharacterterminationByte attribute of a
StringDataEncoding element shall specify the termination characterbyte for the string.

DRAFT RECOMMENDED STANDARD FOR XML ELECTRONIC DATA SHEETS

CCSDS 876.0-P-1.1 Page 3-13 July 2021

NOTES

1 For example, a termination character of zero (null) is used by C-language strings.

2 Bytes used by a termination character are not included in the count of bytes that
constitute the length of the string.

3 UTF-8 characters use variable-length encoding that can contain as much as 4 bytes
per character. Consequently, not all UTF-8 strings of a given character length are
representable by a data type with that byte length.

3.7.14 An EnumeratedDataType shall contain an EnumerationList element, consisting of
a list of one or more Enumeration elements.

3.7.15 Each Enumeration element shall have required label and value attributes,
indicating the integer value corresponding to a given label string.

3.7.16 An Enumeration element may carry attributes provided by the standard DoT
(reference [1]).

3.7.17 A BinaryDataType shall have a required sizeInBits attribute.

3.7.18 A BinaryDataType may have an optional fixedSize attribute:

a) If this attribute is true, then the sizeInBits shall indicate the actual size of data.

b) If this attribute is false, then the sizeInBits shall be the maximum size of data.

c) The default value shall be false.

3.7.19 A SplineCalibrator or PolynomialCalibrator child element may be placed in a
numeric data type element to specify any calibration that would be required to take the raw
value represented by the data type and convert it into the units and other semantic terms
associated with the data type (see 3.15).

DRAFT RECOMMENDED STANDARD FOR XML ELECTRONIC DATA SHEETS

CCSDS 876.0-P-1.1 Page 3-14 July 2021

3.8 RANGES

Figure 3-9: Ranges within a SubRangeDataType Element

NOTE – A range constrains the values of a data type for the purposes of validation and
recognition.

3.8.1 When a range and a calibrator apply to the same data type, the range shall constrain
the raw values (before calibration) of the data type.

3.8.2 Each EnumeratedDataType, FloatDataType, IntegerDataType, orand
SubRangeDataType element shall contain a single Range element of a type corresponding to
table 3-1.

3.8.3 A SubRangeDataType element shall contain a baseType attribute, referring to the
numeric or enumerated scalar type which defines all properties other than range.

3.8.4 The baseType attribute of a SubRangeDataType should not refer to another
SubRangeDataType.

3.8.5 A PrecisionRange element shall be either SINGLE, DOUBLE, or QUADsingle, double,
or quad, representing the full supported representation range of the corresponding IEEE754
floating point data encodings.

3.8.6 A MinMaxRange element shall have an attribute rangeType, one of the options listed
in table 3-2.

DRAFT RECOMMENDED STANDARD FOR XML ELECTRONIC DATA SHEETS

CCSDS 876.0-P-1.1 Page 3-15 July 2021

Table 3-2: MinMaxRange Options

Interval
Notation Relational Notation

XML Notation
rangeType min max

(a..b) {x | a < x < b} exclusiveMinExclusiveMax yes yes
[a..b] {x | a <= x <= b} inclusiveMinInclusiveMax yes yes
[a..b) {x | a <= x < b} inclusiveMinExclusiveMax yes yes
(a..b] {x | a < x <= b} exclusiveMinInclusiveMax yes yes
(a..+∞) {x | a < x} greaterThan yes
[a..+∞) {x | a <= x} atLeast yes
(-∞..b) {x | x < b} lessThan yes
(-∞..b] {x | x <= b} atMost yes

3.8.7 A MinMaxRange element may have attributes min and max, whose presence and values
shall be consistent with table 3-2.

3.8.8 An EnumeratedRange element shall have a list of Label child elements, with values
that shall be enumeration labels of the corresponding EnumeratedDataType.

3.8.9 Each StringDataType element may contain a single Range element of a type
corresponding to table 3-1.

3.9 ARRAYS

Figure 3-10: ArrayDataType and Dimension Elements

NOTE – Arrays provide the means to specify adjacent repetitions of the same type of data,
the elements of which can be accessed by index.

3.9.1 An ArrayDataType element shall contain a dataTypeRef attribute, referring to the
type of the elements within the array.

NOTE – Subsection 4.3 provides further details.

3.9.2 An ArrayDataType element shall contain a DimensionList element with one or
more Dimension child elements.

3.9.3 A Dimension element determines the length of the array dimension, in elements, and
shall either have attribute size, directly indicating the maximum length, or attribute
indexTypeRef, indicating the integer or enumerated data type to be used to index the array.
The type referenced by an indexTypeRef attribute has maximum and minimum legal values,
from which the size of the array can be inferred. When the size attribute is used, the index is

DRAFT RECOMMENDED STANDARD FOR XML ELECTRONIC DATA SHEETS

CCSDS 876.0-P-1.1 Page 3-20 July 2021

3.10.20 A ListEntry element within a container shall specify an attribute
listLengthField which contains the name of another element of the same container whose
value will be used to determine the number of times this entry should be repeated.

3.10.21 A LengthEntry element within a container shall specify an entry whose value is
constrained, or derived, based on the length of the container in which it is present.

3.10.22 If a LengthEntry element has a calibration (see 3.11.7), that calibration shall be
used to map between the length in bytes of the container and the value of the entry, according
to the formula:

container length in bytes = calibration(entry raw value).

NOTE – A constraint that refers to a LengthEntry compares to the entry raw value.

3.10.23 Any calibration specified for a LengthEntry shall be reversible, that is, a linear
polynomial, or spline, with all points of degree 1.

3.10.24 An ErrorControlEntry element within a container shall specify an entry whose
value is constrained, or derived, based on the contents of the container in which it is present.
In addition to a subset of the attributes and elements supported for a regular container entry,
it has the mandatory attribute type, which is one of the values specified in the DoT for
errorControlType as illustrated in table 3-3.

Table 3-3: Error Control Types

Value Description Reference
CRC16_CCITT G(X) = X^16 + X^12 + X^5 + 1 [10], subsection 4.1.4.2
CRC8 G(x) = x^8 + x^2 + x^1 + x^0 [11], clause 5.2
CHECKSUM modulo 2^32 addition of all 4-byte [12], subsection 4.1.2
CHECKSUM_LONGITUDINAL Longitudinal redundancy check,

bitwise XOR of all bytes
[13]

3.10.25 A ContainerDataType element may carry an optional encodingRules attribute,
which, if present, indicates that the container should be encoded according to CBOR or
CBORindefinite encoding.

NOTE – Concise Binary Object Representation (CBOR) is defined in IETF RFC 7049
(reference [18]).

3.10.26 A ContainerDataType element may carry an optional encodedAs attribute, which,
if present, indicates that the container should be encoded as if the totality of its contents were
treated as a single instance of the data type referenced by the attribute.

NOTE – For example, a container encoded as an integer data type and used as an entry in
a container with CBOR encoding would be packed in an integer and then
encoded as the appropriate CBOR type.

DRAFT RECOMMENDED STANDARD FOR XML ELECTRONIC DATA SHEETS

CCSDS 876.0-P-1.1 Page 3-21 July 2021

3.10.27 Each Entry, FixedValueEntry, ListEntry, LengthEntry, ErrorControlEntry,
and PaddingEntry element within a container may contain a PresentWhen element, which,
if present, contains constraints to specify when that entry is present in an instance of that
container type. The types of constraints in a PresentWhen element shall be the same types
that may appear in a ConstraintSet element of a container.

3.10.28 Each RangeConstraint, TypeConstraint, and ValueConstraint element within a
ConstraintSet or PresentWhen element may have an optional negate attribute, which, if
present, indicates when ‘true’ that the negation of the constraint applies. The default value
of the negate attribute shall be ‘false’.

3.11 FIELDS

Figure 3-12: Field Schema Type

NOTES

1 Data types are instantiated in many different circumstances; however, whenever a
data type is instantiated there is a set of common valid attributes and elements. This is
referred to as a ‘field’. This subsection describes these attributes and elements such
that they may be referenced whenever a data type instantiation is described elsewhere
in this document.

DRAFT RECOMMENDED STANDARD FOR XML ELECTRONIC DATA SHEETS

CCSDS 876.0-P-1.1 Page 3-23 July 2021

3.11.7 A SplineCalibrator or PolynomialCalibrator child element of an external field
specifies any calibration that would be required to take the raw value represented by the data
type and convert it into the units and other semantic terms associated with the field (see 3.15).

3.12 INTERFACES

LongDescription

Interface

1..∞

BaseInterfaceSet

GenericType

1..∞

GenericTypeSet

Parameter

1..∞

ParameterSet

Command

1..∞

CommandSet

Interface

1..∞

InterfaceDeclarationSetType

Figure 3-14: Interfaces within a InterfaceDeclarationSetDeclaredInterfaceSet
Element (Which Has Type Name InterfaceDeclarationSetType)

NOTES

1 Standardized interfaces, including those to the subnetwork, are defined with this
interface construct to allow them to be treated symmetrically with user-defined
interfaces.

2 Any interface declared within a data sheet is implicitly scoped to the target device,
bypassing any complexities associated with having multiple devices.

3 An interface definition can be split into multiple parts, and therefore placed in
multiple package files, which can be joined together by specifying the members of
the BaseInterfaceSet. This allows separation of aspects of an interface which address
different concerns or have different authors.

4 No guarantee of run-time compatibility is implied by two different interfaces sharing
a common base interface.

5 All commands and parameters in such a set of aggregated interfaces must have
unique names, so no rules are needed to resolve conflicts between them.

6 An interface can be defined in terms of generic types to avoid placing undue
restrictions on its implementation or use. Such interfaces need to have those generic
types mapped to fully specified types before use (see 3.12.7).

DRAFT RECOMMENDED STANDARD FOR XML ELECTRONIC DATA SHEETS

CCSDS 876.0-P-1.1 Page 3-24 July 2021

3.12.1 An InterfaceDeclarationSetDeclaredInterfaceSet element shall contain one
or more Interface elements.

3.12.2 Each Interface child element of an InterfaceDeclarationSetDeclaredInterfaceSet
is based on the NamedEntityType (see 3.3.7).

3.12.3 The name of each Interface child element of an
InterfaceDeclarationSetDeclaredInterfaceSet element shall be unique.

3.12.4 An Interface element of a DeclaredInterfaceSet element shall contain zero or one
BaseInterfaceSet element referencing one or more Interface elements, zero or one
GenericTypeSet element containing one or more GenericType elements, zero or one
ParameterSet element containing one or more Parameter elements, and zero or one
CommandSet element containing one or more Command elements. The total number of commands
and parameters in a declared interface shall be greater than zero, summing over inheritance
through BaseInterfaceSet and over declaration in ParameterSet and CommandSet.

3.12.5 An Interface element of a DeclaredInterfaceSet element may have an optional
attribute abstract, which, if true, indicates the interface may not be used directly by a component.

3.12.6 An Interface element of a DeclaredInterfaceSet element shallmay have an
attribute level, with value taken from table 3-4, which, if present, indicates the system level
at which it operates. Values of level shall be taken from table 3-4; the default value shall
be ‘application’.

NOTE – The level of an interface corresponds mostly to the layers in a protocol stack for
onboard communications but includes two special layers, application and
environment, which would not be considered to be part of a protocol stack. The
application level represents interfaces between applications that serve a purpose
other than communication protocol. The environment level represents the
interfaces provided by the real world for functions of physical hardware sensors
and actuators. The environment level may describe interfaces for simulation, for
hardware-in-the-loop, and for specification of environmental constraints on
hardware. Hardware constraints in the environmental level may express
manufacturer’s recommended thermal operating ranges, maximum radio
frequency energy, maximum photon count, for example.

Table 3-4: Interface Levels

Name Description
Aapplication Not directly related to device data.
Ffunctional Higher-level virtual abstraction of device data.
Aaccess Lower-level specification of device data.
Ssubnetwork Raw uninterpreted communication channel to a device.
physical OSI layer 1, pins, voltages, etc.
environment For simulation or hardware-in-the-loop, between component and

environment.

DRAFT RECOMMENDED STANDARD FOR XML ELECTRONIC DATA SHEETS

CCSDS 876.0-P-1.1 Page 3-26 July 2021

3.12.12 The name of each Parameter child element of a ParameterSet element shall be
unique within the set of interfaces reachable by BaseType references from the containing
interface.1

3.12.13 Valid values for the mode attribute of a Parameter element shall be ‘sync’ (the
default, indicating a two-way message exchange) or ‘async’.

NOTE – Subsection 4.5 provides further details.

3.12.14 Valid values for the readOnly attribute shall be ‘false’ (the default) or ‘true’.

Figure 3-16: Commands in a CommandSet Element

3.12.15 Each Command child element of a CommandSet element is based on the
NamedEntityType (see 3.3.6), plus an optional mode and pattern attributes, identifying the
command modemessage pattern.

NOTE – The command message pattern is explained in 4.5.

3.12.16 The name of each Command child element of a CommandSet element shall be unique
within the set of interfaces reachable by BaseType references from the containing interface.

NOTE – The reason for this restriction is to eliminate the possibility of a derived interface
overriding a command of a base interface. Instead, the commands of each base
type interface are included unchanged in the derived interface. This is a form of
aggregation of interface commands.

3.12.17 Each Command child element of a CommandSet element identifies a command on an
interface and shall contain zero or more Argument elements, each of which identifies an
argument to the command.

3.12.18 Each Argument child element of a Command element shall have the attributes and
child elements associated with an external field (see 3.10.25) with the addition of an optional
mode attribute, identifying the argument mode.

3.12.19 The name of each Argument child element of a Command element shall be unique
within the command.

1 See the note attached to 3.12.16; a similar explanation applies to parameters.

DRAFT RECOMMENDED STANDARD FOR XML ELECTRONIC DATA SHEETS

CCSDS 876.0-P-1.1 Page 3-29 July 2021

3.13.6 Each Interface child element of a ProvidedInterfaceSet or
RequiredInterfaceSet element is based on the NamedEntityType (see 3.3.6).

3.13.7 The name of each Interface child element of a ProvidedInterfaceSet or
RequiredInterfaceSet element shall be unique within the containing component.

3.13.8 Each Interface element of a ProvidedInterfaceSet or RequiredInterfaceSet
element shall carry a type attribute which identifies the type of the interface by referencing
an element of the DeclaredInterfaceSet entry of a Package or Component.

NOTE – Subsection 4.3 provides further details.

3.13.9 Each Interface element may have a GenericTypeMapSet element which maps the
generic types used to define the interface to the concrete types used in the current
component.

Figure 3-18: Generic Type Mapping

3.13.10 A GenericTypeMap element specifies a mapping of a generic type to a concrete type
and shall have the attributes and child elements associated with a field (see 3.10.25), with the
optional addition of a fixedValue attribute.

3.13.11 The optional fixedValue attribute of a GenericTypeMap element shall specify a
fixed value for the generic type.

NOTE – This is equivalent to specifying a data type with a valid range which contains
only the value specified by the fixedValue attribute.

3.13.12 An AlternateSet child element of a GenericTypeMapSet element, if present,
specifies a set of alternative mappings of generic types to a concrete type and shall contain

DRAFT RECOMMENDED STANDARD FOR XML ELECTRONIC DATA SHEETS

CCSDS 876.0-P-1.1 Page 3-31 July 2021

3.14 COMPONENT IMPLEMENTATIONS

Figure 3-19: Implementation Element of a Component

NOTES

1 The implementation of a component specifies its behaviour, that is, the way in which
data arriving on required interfaces gets transformed into data on provided
interfacesThe implementation of a component specifies its behaviour, that is, the way
in which the component offers data services through provided interfaces, and the way
in which the component uses data services through required interfaces.

2 A set of variables organizes working memory for computation of behaviour.

3 The parameter map set and parameter activity map set provide a terse specification of
the transfer of data between required and provided interfaces.

4 For cases in which this is insufficient, the state machine set contains UML state
machine graphs which express time-driven and event-driven behaviour.

5 The activity set contains snippets of procedures in a form that is consistent with many
structured procedural programming languages. These can be referenced from state
machines and parameter activity maps.

3.14.1 The Implementation child element of a Component element shall contain zero or
one of each of the following elements, in order:

a) VariableSet;

b) ParameterMapSet;

c) ParameterActivityMapSet;

d) ActivitySet;

DRAFT RECOMMENDED STANDARD FOR XML ELECTRONIC DATA SHEETS

CCSDS 876.0-P-1.1 Page 3-35 July 2021

3.15 ACTIVITIES

Figure 3-23: Activities within an ActivitySet Element

NOTE – An activity is a block of executable statements whose invocation is controlled by
one or more state machines.

3.15.1 The ActivitySet element shall contain one or more Activity elements.

3.15.2 Each Activity element is based on the NamedEntityType (see 3.3.6).

3.15.3 The name of each Activity child element of an ActivitySet element shall be unique.

3.15.4 Each Activity element shall contain zero or more Argument elements and one Body
element.

NOTE – Argument elements permit the operation of the activity, specified by the Body element,
to be parameterized. Parameterization means that invocation of the activity must be
accompanied by arguments that provide data values to be used by the activity, and the
body of the activity contains statements that refer to those arguments. In this
document, references to arguments are indicated by the term ‘activity argument’.

3.15.5 Each Argument child element of an Activity element shall have the attributes and
child elements associated with a field (see 3.10.25).

3.15.6 The name of each Argument child element of an Activity element shall be unique.

3.15.7 The Body child element of an Activity element shall contain one or more of the
following elements: SendParameterPrimitive, SendCommandPrimitive, Calibration,
MathOperation, Assignment, Conditional, Iteration, or Call.

3.15.8 The sequence of elements specified in the Body element shall define the sequence of
operations of the activity.

DRAFT RECOMMENDED STANDARD FOR XML ELECTRONIC DATA SHEETS

CCSDS 876.0-P-1.1 Page 3-36 July 2021

LongDescription

VariableRef

Value

ArgumentValue

SendParameterPrimitiveType

Figure 3-24: SendParameterPrimitive Element

3.15.9 A SendParameterPrimitive element shall specify the transmission of a parameter
request or indication primitive to an interface provided or required by the component type.

3.15.10 A SendParameterPrimitive element shall carry

a) an interface attribute, identifying the component interface to which the primitive
relates;

b) a parameter attribute, identifying the interface parameter to which the primitive
relates;

c) an operation attribute, identifying whether the primitive is for a get or set
operation;

d) an optional transaction attribute which permits this primitive to be related to the
opposing primitive of the request/indication pair; and

e) an optional failed attribute, defaulting to false, used in an indication to explicitly
report failure of the corresponding request.

3.15.11 The transaction attribute of the SendParameterPrimitive element shall be
present or absent, depending on the conditions given in table 3-5.

3.15.12 A SendParameterPrimitive element may include an ArgumentValue element
according to the conditions described in table 3-7.

3.15.13 An ArgumentValue element shall include either a Value element, specifying a literal
value to be associated with the primitive, or a VariableRef element, specifying a component
variable or activity argument be associated with the primitive (see table 3-7).

DRAFT RECOMMENDED STANDARD FOR XML ELECTRONIC DATA SHEETS

CCSDS 876.0-P-1.1 Page 3-37 July 2021

Table 3-7: Arguments to a Primitive

Element Interface
Direction

Parameter
Operation

Number of Arguments

SendCommandPrimitive any 0 or more

OnCommandPrimitive any 0 or more

SendParameterPrimitive required Get 0

SendParameterPrimitive provided Get 1

SendParameterPrimitive required Set 1

SendParameterPrimitive provided Set 1

OnParameterPrimitive required Get 1

OnParameterPrimitive provided Get 0

OnParameterPrimitive required Set 1

OnParameterPrimitive provided Set 10

3.15.14The type of the value specified by either the VariableRef or Value child element of
an ArgumentValue element shall match the type of the parameter or command argument to
which the primitive relates.

Figure 3-25: SendCommandPrimitive Element

3.15.15 A SendCommandPrimitive element shall specify the transmission of a command
request or indication primitive to an interface provided or required by the component type.

3.15.16 A SendCommandPrimitive element shall carry

a) an interface attribute, identifying the component interface to which the primitive
relates;

b) a command attribute, identifying the interface command to which the primitive relates;

c) an optional transaction attribute which permits this primitive to be related to the
opposing primitive of the request/indication pair; and

d) an optional failed attribute, defaulting to false, used in an indication to explicitly
report failure of the corresponding request.

3.15.17 The transaction attribute of the SendCommandPrimitive element shall be present
or absent according to the conditions expressed in table 3-5.

DRAFT RECOMMENDED STANDARD FOR XML ELECTRONIC DATA SHEETS

CCSDS 876.0-P-1.1 Page 3-38 July 2021

3.15.18 A SendCommandPrimitive element may include a number of ArgumentValue
elements according to the conditions described in table 3-7.

3.15.19 Each ArgumentValue child element of a SendCommandPrimitive element shall
carry a name attribute identifying the command argument with which this value is associated.

Figure 3-26: Assignment Element

3.15.20 An Assignment element shall specify the assignment of a value, either by specifying
as a literal or by referencing a component variable or activity argument, to a component
variable.

3.15.21 An Assignment element shall carry an outputVariableRef attribute identifying the
component variable to which the value should be assigned.

3.15.22 An Assignment element shall include either a Value element, specifying a literal
value to be assigned to the output parameter, or a VariableRef element which specifies a
component variable or activity argument to use as the source of the value to assign to the
output parameter.

Figure 3-27: Polynomial and Spline Calibrators within a Calibration Element

3.15.23 A Calibration element shall specify the assignment of a value, either by specifying
as a literal or by referencing a component variable or activity argument, to a component
variable, translating the value according to a specified calibration operation.

3.15.24 A Calibration element shall carry an outputVariableRef attribute identifying the
component variable to which the calibrated value should be assigned.

DRAFT RECOMMENDED STANDARD FOR XML ELECTRONIC DATA SHEETS

CCSDS 876.0-P-1.1 Page 3-39 July 2021

3.15.25 A Calibration element shall include either a Value element, specifying a literal
value to calibrate before assignment to the output variable, or an inputVariableRef
element, specifying a component variable or activity argument to use as the source of the
value to calibrate before assignment to the output parameter.

3.15.26 A Calibration element shall include either a SplineCalibrator or
PolynomialCalibrator element.

3.15.27 A SplineCalibrator element shall have an attribute extrapolate, indicating
whether to extrapolate values outside the range of points.

3.15.28 A SplineCalibrator element shall have two or more SplinePoint child elements.

3.15.29 The attributes of aA SplinePoint child element of a SplineCalibrator shall have
attributes raw and calibrated, which together represent a point on the spline curve used to
convert from raw to calibrated values, and order, which represents the algorithm used to
interpolate values between this point and the nextmaximum degree of the polynomial
segment between that point and the point with the next higher raw value. The order attribute
value shall be in {1, 2, 3}. Specification of a value n for order shall also imply that the
zeroth through (n−1)th derivatives of the polynomial segments ending and beginning at the
spline point shall be the same. The value of the polynomial segments at a spline point shall
equal the calibrated value of the spline point. If order is not specified, it shall be assumed to
be 1. The second derivatives of the polynomial segments at the spline points with greatest
and least raw values shall be implicitly zero.

NOTES

1 A spline of order 1 is linear (i.e., a traditional point calibration), a spline of order 2 is
quadratic, and a spline of order 3 is cubic. There must be the mathematically
necessary number of consecutive points of a given order to support higher-order
spline curves.

2 The zeroth derivative of a function is the value of the function.

3 The continuity constraints above force equality of polynomial segments at each
interior spline point. The spline function passes through each spline point.

3.15.30 A PolynomialCalibrator element shall have one or more Term child elements.

3.15.31 A Term child element of a PolynomialCalibrator shall have attributes
coefficient and exponent, which together define one term of the polynomial expression
used to convert from raw to calibrated values.

DRAFT RECOMMENDED STANDARD FOR XML ELECTRONIC DATA SHEETS

CCSDS 876.0-P-1.1 Page 3-40 July 2021

LongDescription

Value

VariableRef

Operator

1..∞

MathOperationType

Figure 3-28: MathOperation Element

3.15.32 A MathOperation element shall specify a mathematical operation in postfix
(Reverse Polish) notation.

NOTE – This means that the sequence of values and operators must be valid when taking
into account the ‘arity’ column of table 3-8.

3.15.33 A MathOperation element shall carry an outputVariableRef attribute identifying
the component variable to which the calculated value should be assigned.

NOTE – The encoding and size of the variable referenced by the outputVariableRef
attribute determines the precision of the math operation.

3.15.34 The implementation of math operations should operate internally on floating point
numbers. When the output variable reference specifies an integer type, and the math
operation computes a non-integer result, the implementation should throw an error condition.

3.15.35 In order to avoid an error, the math operation must specify how to achieve an
integer result using a function such as ceiling, floor, or round.

3.15.36 A MathOperation element shall include a sequence of the following child elements:

a) Value;

b) VariableRef;

c) Operator.

3.15.37 The Value and VariableRef child elements of a MathOperation element shall have
the same contents and meanings as the elements of the same name of an Assignment
element.

NOTE – Math operations apply to integer and floating point values and variables.

3.15.38 An Operator child element of a MathOperation element shall have a single
attribute operator, which shall be one of the values from table 3-8.

DRAFT RECOMMENDED STANDARD FOR XML ELECTRONIC DATA SHEETS

CCSDS 876.0-P-1.1 Page 3-43 July 2021

3.15.43 An OnConditionTrue element shall contain one or more of the elements allowed in
an activity body specifying the operations to perform if the outcome of the condition
expression is ‘true’.

3.15.44 An OnConditionFalse element shall contain one or more of the elements allowed in
an activity body specifying the operations to perform if the outcome of the condition
expression is ‘false’.

3.15.45 An Iteration element shall specify the repeated execution of elements of the activity.

3.15.46 An Iteration element shall carry an iteratorVariableRef attribute identifying
the component variable to use to hold the iteration value.

3.15.47 An Iteration element shall either contain either an OverArray element or a
StartAt element, zero or onea Step element, and an EndAt element, in that order.

3.15.48 An Iteration element shall contain a Do element after all other elements.

3.15.49 The OverArray element of an Iteration element shall specify an array over which
to iterate, assigning the value of each array element, in turn, to the iteration parameter.

3.15.50 The StartAt element shall include either a Value element, specifying a literal value
to be assigned as the initial value of the iteration parameter, or a VariableRef element,
specifying a component variable or activity argument to use as the source of the value to use
as an initial value of the iteration parameter.

3.15.51 The EndAt element shall include either a Value element, specifying a literal value to
be used as the final value of the iteration parameter (inclusive), or a VariableRef element,
specifying a component variable or activity argument to use as the source of the value to use
as the final value of the iteration parameter (inclusive).

3.15.52 A Step element shall include either a Value element, specifying a literal value to be
used as the difference in value of the iteration parameter between iterations, or a VariableRef
element, specifying a component variable or activity argument to use as the source of the value
to be used as the difference in value of the iteration parameter between iterations.

3.15.53 The Do element shall contain one or more of any of the elements allowed in an
activity body.

3.15.54 A Call element shall identify a nested activity to be called at this point in the
activity execution.

3.15.55 A Call element shall include zero or more ArgumentValue elements, each of which,
in turn, shall carry a name attribute, identifying the name of an activity argument and
including either a Value element, specifying a literal value to be associated with the named
activity argument, or a variableRef element, specifying a component variable or activity
argument to associate with the named activity argument.

DRAFT RECOMMENDED STANDARD FOR XML ELECTRONIC DATA SHEETS

CCSDS 876.0-P-1.1 Page 3-44 July 2021

3.16 STATE MACHINES

Figure 3-31: State Machines within a StateMachineSet Element

NOTE – A state machine responds to events and schedules the execution of activities.

3.16.1 Each StateMachine element may carry a defaultEntryState attribute identifying
the name of the state to transition to with no action immediately on initialization.

3.16.1 Each StateMachine element shall include one or more of the following elements:
EntryState, ExitState, State, and Transition.

3.16.2 Each child element of a StateMachine element shall carry a name attribute
identifying the name of that element.

3.16.3 The name of each child element of a StateMachine element shall be unique within
the state machine.

3.16.4 Each State element shall include zero or one of the following elements: OnEntry,
OnExit.

3.16.5 The OnEntry, OnExit, and Do elements shall each specify the name of an activity,
using the activity attribute, to be invoked on entry to the state, immediately before exit
from the state, and when performing a transition between states, respectively.

DRAFT RECOMMENDED STANDARD FOR XML ELECTRONIC DATA SHEETS

CCSDS 876.0-P-1.1 Page 3-46 July 2021

3.16.9 Each Transition element shall include one of the following elements:

a) OnCommandPrimitive;

b) OnParameterPrimitive;

c) OnTimer.

3.16.10 Each Transition element shall include zero or one of each of the following
elements:

a) Guard;

b) Do.

3.16.11 An OnTimer element shall contain a nanosecondsAfterEntry attribute which
indicates the number of nanoseconds that shall elapse between state entry and triggering the
transition, providing that the guard condition is met.

3.16.12 An OnCommandPrimitive or OnParameterPrimitive element shall identify the
primitive that shall be received to trigger the transition, providing that the guard condition is met.

3.16.13 An OnParameterPrimitive element shall carry

a) an interface attribute, identifying the component interface to which the primitive
relates;

b) a parameter attribute, identifying the parameter to which the primitive relates;

c) an operation attribute, identifying whether the primitive is for a get or set operation;

d) an optional transaction attribute, permitting the primitive reception to be matched
to the corresponding primitive transmission using a string identifier; and

e) an optional failed attribute, defaulting to false, identifying whether the transition
should be triggered on successful or failed indications.

NOTE – A failed indication can be sent using a primitive with the failed attribute set
to true.

3.16.14 The transaction attribute of an OnCommandPrimitive or OnParameterPrimitive
element shall be present according to the conditions defined in table 3-5.

3.16.15 An OnParameterPrimitive element may, according to the conditions defined in
table 3-7, include a VariableRef element specifying a component variable to receive the
value associated with the primitive.

3.16.16 An OnCommandPrimitive element shall carry

a) an interface attribute, identifying the component interface to which the primitive
relates;

DRAFT RECOMMENDED STANDARD FOR XML ELECTRONIC DATA SHEETS

CCSDS 876.0-P-1.1 Page 3-47 July 2021

b) a command attribute, identifying the command to which the primitive relates;

c) an optional transaction attribute, permitting the primitive reception to be matched
to the corresponding primitive transmission using a string identifier; and

d) an optional failed attribute, defaulting to false, identifying whether the transition
should be triggered on successful or failed indications.

NOTE – A failed indication can be sent using a primitive with the failed attribute set
to true.

3.16.17 An OnCommandPrimitive element shall include zero or more ArgumentValue
elements, each of which, in turn, includes a VariableRef elementan outputVariableRef
attribute which specifies a component variable to associate with a command argument to the
primitive.

3.16.18 A Guard child element of a transition shall identify the guard condition that shall be
met to trigger the transition, providing that the trigger event has been received.

NOTE – If no Guard element is present, no condition need be met to trigger the transition.

3.16.19 A Guard element shall specify a Boolean expression as shown in figure 3-303-32.

NOTE – Command arguments are accessible to the expression as described in 4.6.2.17.2.

DRAFT RECOMMENDED STANDARD FOR XML ELECTRONIC DATA SHEETS

CCSDS 876.0-P-1.1 Page 4-3 July 2021

4.3.2.11 If a component variable, interface parameter, or argument is used in relation to a
destination component variable, interface parameter, or argument, the types of the source and
destination shall matchtype conversion shall occur (see 4.8).

4.3.2.12 If a source literal is used in relation to a destination component variable, interface
parameter, or argument, the value of the literal shall be valid according to table 3-1.

4.3.2.13 Activity or state machine operations which reference nonliteral values shall
reference component variables and activity arguments only, not interface parameters.

NOTES

1 Interface parameters can only be accessed using the dedicated operations described in 4.5.

2 Command arguments are accessible to Guard expressions as described in 4.6.2.17.2.

4.3.2.14 Activity or state machine operations which reference a parameter, variable, or
argument which is an instance of a container parameter type may select a single entry from
the container using the following syntax:

{parameter name}.{entry name}

4.3.2.15 Activity or state machine operations which reference a parameter, variable, or
argument which is an array may select a single element from the array using the following
syntax:

{parameter name}[{0-based element index}]

NOTES

1 The element index may be specified as an enumeration literal, or the current value of
a variable or argument of integer or enumerated type. When an enumerated type
indexes an array, the enumeration shall have consecutive values, the lowest of which
is zero.

2 Array indexing with out of range (including negative) values is a Failure Detection,
Isolation, and Recovery (FDIR) trigger, that is, ‘an indication that the device has left
the scope of the nominal behaviour documented by the datasheet’. Some cases can be
detected statically by datasheet tooling; ideally this would include as a warning the
use of an index type that allowed negative values, and as an error in the datasheet the
use of an index type with a completely negative range. The implementation of FDIR
handling is not specified in this standard.

DRAFT RECOMMENDED STANDARD FOR XML ELECTRONIC DATA SHEETS

CCSDS 876.0-P-1.1 Page 4-4 July 2021

4.3.2.16 The above two rules may be chained together to access nested array and container
entries. Interpretation shall be left-associative with equal precedence.

NOTE – For chained access, the ‘.’ and ‘[]’ syntax would be used as appropriate for the
type of the object on their left. For example, if ‘name’ refered to an instance
whose type is an array of quaternions, the array type would be defined with
elements that are quaternion type, and the quaternion type could be defined as a
container with elements ‘x’, ‘y’, ‘z’, and ‘r’. To refer to the real part of the first
quaternion in the array, the syntax is ‘name[0].r’. The ‘[0]’ applies to the array
type, and yields a quaternion type, to which the ‘.r’ applies.

4.3.2.17 References to data types, by means of baseType attributes or by means of
BaseType elements, collectively form a graph of references. That graph shall contain no
circuits.

NOTE – The schema does not enforce this statement. A tool chain is expected to enforce
this statement, in order to protect itself from endless referential loops, by not
supporting forward references.

4.3.2.18 The same activity argument name may be used in more than one activity. No
activity argument name shall be the same as a component variable name.

4.3.2.19 State-machine-transition guard expressions may reference arguments of the
primitive that triggers the transition.

DRAFT RECOMMENDED STANDARD FOR XML ELECTRONIC DATA SHEETS

CCSDS 876.0-P-1.1 Page 4-6 July 2021

4.5 PRIMITIVE ASSOCIATIONS

4.5.1 OVERVIEW

The state machines making up a component are driven by messages arriving on the interfaces
to and from that component. These messages, called primitives, are defined by the set of
parameters and commands present on the interface definitions.

Interfaces are two-way and asymmetric; the component requiring the interface is referred to
as the consumer, and the component providing it as the provider.

If the parameter or command mode is sync, then messages in both directions must be present
even if they have no content. In other cases, empty messages are omitted.

If the parameter mode is sync, then messages in both directions will be present even if they
have no content. For a command, the pattern describes the set of messages that are present
(see figure 4-3). If not specified, the pattern of a command is calculated according to
table 4-1. In either case, a message that exists but has no content is a pulse; it carries no
information, but can still trigger a state transition.

Parameters that are read-only may not be set by a client of that interface.

DRAFT RECOMMENDED STANDARD FOR XML ELECTRONIC DATA SHEETS

CCSDS 876.0-P-1.1 Page 4-8 July 2021

Consumer Provider

Consumer Provider

request(inArgs)

request(inArgs)

request(inArgs)

update(notifyArgs)

indication(outArgs)

indication(outArgs)

update(notifyArgs)

request(inArgs)

request()

indication(outArgs)

indication(outArgs)

indication()

async

inArgsOnly

outArgsOnly

inAndNotify

loop

loop

allArgTypes

inAndOutArgs

outArgsOnly

inArgsOnly

sync

request(inArgs)

DRAFT RECOMMENDED STANDARD FOR XML ELECTRONIC DATA SHEETS

CCSDS 876.0-P-1.1 Page 4-9 July 2021

Consumer Provider

request(inArgs)

request(inArgs)

request(inArgs)

update(notifyArgs)

indication(outArgs)

reply(outArgs)

reply(outArgs)

loop

IN

OUT

INOUT

NOTIFY

Figure 4-3: Command Definitions and Primitives

EDS has seven distinct interaction patterns for commands, based on whether the command
mode is async or sync, and on the set of input, output, and notify arguments it has.

EDS has four distinct interaction patterns for commands. If pattern is specified, then it is
one of the patterns in figure 4-3; that is in, out, inout, or notify. If pattern is not
specified, then the pattern is inferred as in table 4-1, based on whether the command mode is
async or sync, and on the set of input, output, and notify arguments it has.

Table 4-1: Command Message Pattern Inference

Command Argument Modes Present Command mode=”async” Command mode=”sync”
in in in
out out out
notify error notify
in and out, or inout error inout
in and notify error notify
out and notify error notify
(in and out, or inout) and notify error notify

DRAFT RECOMMENDED STANDARD FOR XML ELECTRONIC DATA SHEETS

CCSDS 876.0-P-1.1 Page 4-10 July 2021

NOTE – These patterns are similar to those in the Mission Operations Message
Abstraction Layer (MAL) (reference [D5]). As such, a SEDS could be used to
describe the on-the-wire encoding of a MAL message.

4.5.2 SPECIFICATION

State A Indication[required]

Request[provided]

State B

Figure 4-4: Primitives That Trigger State Transition

4.5.2.1 If a parameter primitive is to be received (to trigger a state machine transition), the
primitive shall be

a) a get operation primitive from an interface provided by the component identifying a
parameter value read request;

b) a set operation primitive from an interface provided by the component identifying a
parameter value write request;

c) a get operation primitive from an interface required by the component identifying a
parameter value read indication; or

d) a set operation primitive from an interface required by the component identifying a
parameter value write indication.

State A

State B

send Request send Indication

required providedinterface

Figure 4-5: Primitives Sent During Activity Execution

4.5.2.2 If a parameter primitive is to be transmitted (by an activity), the primitive shall be

a) a get operation primitive to an interface provided by the component identifying a
parameter value read indication;

b) a set operation primitive to an interface provided by the component identifying a
parameter value write indication;

DRAFT RECOMMENDED STANDARD FOR XML ELECTRONIC DATA SHEETS

CCSDS 876.0-P-1.1 Page 4-12 July 2021

4.5.2.11 The reception of a command request primitive may specify the component variable
into which the value of any arguments of modes in or inout can be stored.

4.5.2.12 The reception of a command indication primitive may specify the component
variable into which the value of any arguments of modes out or inout can be stored.

4.5.2.13 The reception of a command update primitive may specify the component variable
into which the value of any arguments of modes notify can be stored.

4.5.2.14 The transmission of a command request primitive shall specify a value for all
arguments of modes in or inout.

4.5.2.15 The transmission of a command indication primitive shall specify a value for all
arguments of modes out or inout.

4.5.2.16 The transmission of a command update primitive shall specify a value for all
arguments of modes notify.

4.5.2.17 A contradiction between specified pattern and pattern inferred from mode shall be
invalid.

DRAFT RECOMMENDED STANDARD FOR XML ELECTRONIC DATA SHEETS

CCSDS 876.0-P-1.1 Page 4-15 July 2021

NOTE – Otherwise, the data sheet is invalid, although this cannot necessarily be statically
detected. When developing a SEDS for a device, a mapping from primitives to
state machine transitions is implied by the guard conditions. The mapping could
contain complex expressions that depend upon data appearing in the interface, so
testing all combinations could be impractical.

4.6.2.12 Only one EntryState element shall be present in a given state machine, and if it is
present, the defaultEntryState attribute shall not be set.

4.6.2.13 If an explicit EntryState element is present, it shall be used as the starting state.

NOTE – This allows explicit specification of initialization actions.

4.6.2.14 If the defaultEntryState attribute is present, a default starting state shall be used,
causing an immediate and unconditional transition, with no action, into the specified state.

4.6.2.14 If a state machine transitions to an exit state, the device should be considered to
have left the scope of the nominal behaviour documented by the datasheet.

4.6.2.15 If an error occurs in an activity, such as an arithmetic error, or such as violation of
the range of a range-constrained type, the device should be considered to have left the scope
of the nominal behavior documented by the datasheet. Detection of violation of a range
constraint should be done by software generated by a tool chain and should not necessarily
be explicit in the activity body.

NOTE – Detection of arithmetic errors is typically done by computer hardware.

4.6.2.16 If an activity contains an assignment, calibration, or math operation in which the
semantic tags of the result of computation are incompatible with the semantic tags of the
output variable reference, the tool chain may report an error in the SEDS instance.

4.6.2.17 An implementation of a state machine should satisfy the following sequence of
operations.

4.6.2.17.1 A primitive command or parameter event occurs.

4.6.2.17.2 The state machine evaluates on-conditions and Guards of all transitions whose
fromState is the current state.

NOTES

1 The Boolean expression of a Guard in a transition with an OnCommandPrimitive
element with ArgumentValue elements may refer to the values of those arguments of
the command by the name attribute in the ArgumentValue element.

2 The Boolean expression of a Guard in a transition with an OnParameterPrimitive
element cannot refer to the parameter value, but the definition of the parameter in a

DRAFT RECOMMENDED STANDARD FOR XML ELECTRONIC DATA SHEETS

CCSDS 876.0-P-1.1 Page 4-16 July 2021

Parameter element in a DeclaredInterfaceSet implies that the type of the parameter
must be checked in order to satisfy the OnParameterPrimitive condition.

4.6.2.17.3 One of three mutually exclusive conditions occurs here.

4.6.2.17.3.1 If more than one transition passes its on-condition and Guard, then that is an
error condition in flight, the possibility of which should have been detected by static analysis
or by testing before flight. (See 4.6.2.11, which implies that the state machine leaves the
scope of nominal behavior defined by the data sheet.)

4.6.2.17.3.2 If exactly one transition passes its Guard, then the next step is 4.6.2.17.4.

4.6.2.17.3.3 If no transition passes, then the state machine does not change state and the
procedure exits.

NOTE – Only step 4.6.2.17.3.2 can continue here.

4.6.2.17.4 If the transition has an OnCommandPrimitive element with ArgumentValue
elements, then the values are stored in the associated component variables. If the transition
has an OnParameterPrimitive element with a VariableRef element, then the value of the
parameter is stored in a component variable identified in the VariableRef element.

4.6.2.17.5 The state machine executes the OnExit activity of the current state.

4.6.2.17.6 The state machine executes the Do activity of the transition.

4.6.2.17.7 The state machine changes to the state identified by the toState of the transition.

4.6.2.17.8 The state machine executes the OnEntry activity of the state to which it
transitions.

4.7 ENCODING AND DECODING

4.7.1 OVERVIEW

Any interface definition with level set to subnetwork corresponds to a subnetwork Service
Access Point (SAP). When a component uses one of these SAPs as a required interface and
refers to that required interface in a primitive association, the tool chain should interpret the
reference as an interaction through a subnetwork SAP.

When primitives are sent on such an interface, they must be translated into Protocol Data
Units (PDUs) by a process known as encoding. Parts of this encoding (such adding
spacewire routing headers) are specified by the definition of the subnetwork protocol in use,
and therefore do not need to be specified in the datasheet using such an interface.

Of the actual arguments required by the underlying subnetwork implementation,

DRAFT RECOMMENDED STANDARD FOR XML ELECTRONIC DATA SHEETS

CCSDS 876.0-P-1.1 Page 4-19 July 2021

4.8 TYPE CONVERSION

4.8.1 OVERVIEW

In SEDS, a type defines two things:

a) an abstract, implementation-independent set of possible values, optionally with usage
constrained by semantic attributes;

b) optionally, a mechanism to translate a value from that set to and from a binary
representation.

The latter is known as encoding and decoding (see 4.6.2.17 for details).

Type conversion is the process for taking an abstract value belonging to one type and finding
the equivalent abstract value of another type. This process can fail if there are values in the
source value set that are not in that of the target type, for example, when the target type has a
smaller numeric range. If a device behaves in such a way that this failure actually occurs, the
device should be considered to have left the scope of the nominal behavior documented by
the datasheet.

Conversion is always used in assignment between, and operations on, component variables, and
activity arguments. It is also used for interface command arguments that are not data units.

In contrast to encoding and decoding, type conversion may never change the value
converted. A concrete implementation that did so, for a device that had not itself exhibited a
prior error, would itself be in error.

Conversion to and from the same type, or identical types, is a null operation that can never fail.

4.8.2 SPECIFICATION

4.8.2.1 A value shall be converted when

a) it is assigned to a component variable via the outputVariableRef attribute of an
Assignment, Calibration, or MathOperation;

b) it is passed as an argument of an activity;

c) it is passed or received as a non-data-unit argument of a command.

4.8.2.2 The type to be converted to shall be that of the target field.

NOTE – The named type referenced by the field can be modified by inline type
descriptors such as ValidRange or ArrayDimensions (see 3.11).

DRAFT RECOMMENDED STANDARD FOR XML ELECTRONIC DATA SHEETS

CCSDS 876.0-P-1.1 Page 4-20 July 2021

4.8.2.3 Four fundamental categories of types shall be subject to conversion:

– set-based values (BooleanDataType, EnumeratedDataType, enumerated
SubRangeDataType, enumerated StringDataType, and corresponding fields);

– range-based values (IntegerDataType, FloatDataType, numeric
SubRangeDataType, and corresponding fields);

– sequences (non-enumerated StringDataType, BinaryDataType, ArrayDataType,
and corresponding fields); and

– structured values (ContainerDataType).

4.8.2.4 Conversion shall fail

a) always between types of different categories;

b) for set-based values outside the enumerated set of the target type;

c) for range-based values outside the valid range of the target type;

d) for sequences with a length outside the valid length of the target sequence;

e) for sequences if it fails for any value within the source sequence;

f) for structured values if the target type has a field not present in the source value;

g) for structured values if it fails for any value within the structure.

4.8.2.5 For numeric data types that include a calibrator, the range constraints shall refer to
the uncalibrated value, and the unit attribute shall refer to the calibrated value. If both the
source and the target have calibrators, then both calibrators must be identical, or conversion
shall fail.

4.8.2.6 If a conversion in a data sheet will always fail, that data sheet shall be invalid

NOTE – For example, a conversion between different EnumeratedDataTypes or from a
literal value outside the target range will always fail.

4.8.2.7 If any conversion fails, the device shall be considered to have left the scope of the
nominal behavior documented by the datasheet.

NOTE – If a conversion in a datasheet will possibly fail, datasheet tooling could issue a
diagnostic warning. For example, an assignment between numeric values with
overlapping ranges will fail if the assigned value is not within the intersection of
the ranges. This will be the case when assigning between types representing
signed and unsigned integers of the same size. Another example: If the usage
constraints of explicit semantic tags of the source differ from those of the target,
a diagnostic warning could be issued.

DRAFT RECOMMENDED STANDARD FOR XML ELECTRONIC DATA SHEETS

CCSDS 876.0-P-1.1 Page B-2 July 2021

B1.5 RELIABILITY

While it is assumed that the underlying mechanisms used to implement the devices operate
correctly, the SEDS make no assumptions as to their reliability.

B2 SANA CONSIDERATIONS

The recommendations in this document have created the following SANA registry, named
‘Spacecraft Onboard Interface Services Electronic Data Sheets and Dictionary of Terms’ and
located at http://sanaregistry.org/r/sois/. The registry consists of a set of files that constitute
an XML schema, an ontology, and related files.

The registration rule for change to this registry requires an engineering review by a
designated managing authority. The managing authority shall be assigned by the SOIS-APP
working group Chair, or in absence, Area Director. The managing authority may request
assistance from subject matter experts provided or recommended by participating agencies.

At time of publication, the registry contains the items in table B-1:

Table B-1: SANA Registry Content (Normative Unless Noted Otherwise)

File Description
seds.xsd The schema for SOIS Electronic Data Sheets.
seds-core-semantics.xsd The SOIS Dictionary of Terms in the form of a schema to

be included by seds.xsd.
seds-extension-semantics.xsd A non-normative schema to be included by seds.xsd for

non-interoperable terms that are needed by a project sooner
than the terms can be incorporated in the DoT.

ccsds.sois.modops.xml A non-normative collection of definitions that may be
referenced by SEDS instances for models of operations.

ccsds.sois.seds.xml A non-normative collection of definitions that can reduce
the number of definitions in an electronic data sheet.

ccsds.sois.subnetwork.xml A non-normative collection of definitions that can facilitate
integration with SOIS subnetwork services.

dod.milbus.milstd1553.xml A non-normative collection of definitions that can facilitate
integration with DOD Milbus 1553 subnetworks.

esa.ecss.milstd1553.xml A non-normative collection of definitions that can facilitate
integration with ESA ECSS 1553 subnetworks.

sois.0.owl The ontology for SOIS Dictionary of Terms. This ontology
imports sysml-qudv-si-sois.owl.

sysml-qudv.owl The original proof-of-concept definition of quantities, units,
dimensions, and values.

DRAFT RECOMMENDED STANDARD FOR XML ELECTRONIC DATA SHEETS

CCSDS 876.0-P-1.1 Page B-3 July 2021

sysml-qudv-si.owl The original proof-of-concept extension of QUDV to the
International System of Units. This ontology imports
SysML-QUDV.owl.

sysml-qudv-si-sois.owl An extension of the original QUDV ontologies to support
units used in SOIS EDS. This ontology imports SysML-
QUDV-SI.owl.

soisOwlTools.zip A non-normative compressed project that contains open-
source utilities that are intended to perform the following
functions:

– Converts a conformant ontology into a seds-core-
semantics.xsd

– - Extracts a SEDS instance that contains definitions
of standard types

– Extracts an HTML file for human-readable listing of
Dictionary of Terms.

– Extracts an XML file of units and quantity kinds for
use by tool chain functions for analysis of units

seds.xsd The schema for SOIS Electronic Data Sheets.

B3 PATENT CONSIDERATIONS

The technology used in managing SEDS (xmlXML and xsdXSD) is in the public domain.

DRAFT RECOMMENDED STANDARD FOR XML ELECTRONIC DATA SHEETS

CCSDS 876.0-P-1.1 Page C-1 July 2021

ANNEX C

ABBREVIATIONS AND ACRONYMS

(INFORMATIVE)

CBOR Concise Binary Object Representation

CCSDS Consultative Committee for Space Data Standards

DoT Dictionary of Terms

FDIR Failure Detection, Isolation, and Recovery

MAL Message Abstraction Layer

OSI Open Systems Interconnection

OWL Web Ontology Language

PDU Protocol Data Unit

PICS Protocol Implementation Conformance Statement

QUDV Quantities, Units, Dimensions, Values

SANA Space Assigned Numbers Authority

SAP Service Access Point

SEDS SOIS Electronic Data Sheet

SOIS Spacecraft Onboard Interface Services

XML eXtensible Markup Language

XSD XML Schema Definition

DRAFT RECOMMENDED STANDARD FOR XML ELECTRONIC DATA SHEETS

CCSDS 876.0-P-1.1 Page D-1 July 2021

ANNEX D

INFORMATIVE REFERENCES (INFORMATIVE)

[D1] Information Technology—Open Systems Interconnection—Basic Reference Model: The
Basic Model. 2nd ed. International Standard, ISO/IEC 7498-1:1994. Geneva: ISO,
1994.

[D2] Spacecraft Onboard Interface Services. Issue 2. Report Concerning Space Data System
Standards (Green Book), CCSDS 850.0-G-2. Washington, D.C.: CCSDS, December
2013.

[D3] The Application of Security to CCSDS Protocols. Issue 3. Report Concerning Space
Data System Standards (Green Book), CCSDS 350.0-G-3. Washington, D.C.: CCSDS,
March 2019.

[D4] Electronic Data Sheets and Dictionary of Terms for Onboard Devices and
Components. Report Concerning Space Data System Standards. Forthcoming.

[D5] Mission Operations Message Abstraction Layer. Issue 2. Recommendation for Space
Data System Standards (Blue Book), CCSDS 521.0-B-2. Washington, D.C.: CCSDS,
March 2013.

DRAFT RECOMMENDED STANDARD FOR XML ELECTRONIC DATA SHEETS

CCSDS 876.0-P-1.1 Page E-1 July 2021

ANNEX E

EXAMPLE SEDS/XML SCHEMA INSTANTIATIONS

(INFORMATIVE)

The above example shows a datasheet defining a device SimpleDevice with a single component
DeviceDACP that in turn provides a single interface, VendorSpecificInterface. The interface type
DeviceAccessInterface has one command DoSomething and one parameter DeviceMode. Both of
those definitions share a single data type, MyInteger.

The definition of the subnetwork interface used (MASInterfaceType) is provided in an external
file. It should be noted that in this example, no implementation of the component is defined;
a fully specified device datasheet would include the logical transformations needed to map
between the required and provided interfaces as state machines.

<?xml version="1.0" encoding="UTF‐8"?>
<DataSheet
 xmlns="http://www.ccsds.org/schema/sois/seds"
 xmlns:xi="http://www.w3.org/2001/XInclude"
 xmlns:xsi="http://www.w3.org/2001/XMLSchema‐instance"
 xsi:schemaLocation="http://www.ccsds.org/schema/sois/seds seds.xsd">
 <Device name="SimpleDevice" shortDescription="Simple arbitrary example of SEDS XML usage">
 </Device>
 <xi:include href="ccsds.sois.subnetwork.xml" xpointer="element(/1/1)"/>
 <Package name="SimpleDemo">
 <DataTypeSet>
 <IntegerDataType name="MyInteger">
 <Range>
 <MinMaxRange min="0" max="4294967296" rangeType="inclusiveMinInclusiveMax" />
 </Range>
 </IntegerDataType>
 </DataTypeSet>
 <DeclaredInterfaceSet>
 <Interface name="DeviceAccessInterface">
 <ParameterSet>
 <Parameter name="DeviceMode" type="MyInteger"/>
 </ParameterSet>
 <CommandSet>
 <Command name="DoSomething">
 <Argument name="WithANumber" type="MyInteger" mode="in"/>
 </Command>
 </CommandSet>
 </Interface>
 </DeclaredInterfaceSet>
 <ComponentSet>
 <Component name="DeviceDACP">
 <ProvidedInterfaceSet>
 <Interface name="VendorSpecificInterface" type="DeviceAccessInterface"/>
 </ProvidedInterfaceSet>
 <RequiredInterfaceSet>
 <Interface name="Subnetwork" type="CCSDS/SOIS/Subnetwork/MASInterfaceType"/>
 </RequiredInterfaceSet>
 </Component>
 </ComponentSet>
 </ Package >
</DataSheet>

